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A B S T R A C T

Water quality performance of eight roadside bioretention cells in their third and fourth years of implementation
were evaluated in Burlington, Vermont. Bioretention cells received varying treatments: (1) vegetation with high-
diversity (7 species) and low-diversity plant mix (2 species); (2) proprietary SorbtiveMedia™ (SM) containing
iron and aluminum oxide granules to enhance sorption capacity for phosphorus; and (3) enhanced rainfall and
runoff (RR) to certain cells (including one with SM treatment) at three levels (15%, 20%, 60% more than their
control counterparts), mimicking anticipated precipitation increases associated with climate change. A total of
121 storms across all cells were evaluated in 2015 and 2016 for total suspended solids (TSS), nitrate/nitrite-
nitrogen (NOx), ortho-phosphorus (Ortho-P), total nitrogen (TN) and total phosphorus (TP). Heavy metals were
also measured for a few storms, but in 2014 and 2015 only. Simultaneous measurements of flow rates and
volumes allowed for evaluation of the cells’ hydraulic performances and estimation of pollutant load removal
efficiencies and EMC reductions. Significant average reductions in effluent stormwater volumes (75%; range:
48–96%) and peak flows (91%; range: 86–96%) was reported, with 31% of the storms events (all less than
25.4 mm (1 in.), and one 39.4mm (1.55 in.)) depth completely captured by bioretention cells. Influent TSS
concentrations and event mean concentrations (EMCs) was mostly significantly reduced, and TSS loads were
well retained by all bioretention cells (94%; range: 89–99%) irrespective of treatments, storm characteristics or
seasonality. In contrast, nutrient removal was treatment-dependent, where the SM treatments consistently re-
moved P concentrations, loads and EMCs, and sometimes N as well. The vegetation and RR treatments mostly
exported nutrients to the effluent for those three metrics with varying significance. We attribute observed nu-
trient exports to the presence of excess compost in the soil media. Rainfall depth and peak inflow rate had
consistently negative effects on all nutrient removal efficiencies from the bioretention cells likely by increasing
pollutant mobilization. Seasonality followed by soil media presence, and antecedent dry period were other
predictors significantly influencing removal efficiencies for some nutrient types. Results from the analysis will be
useful to make bioretention designers aware of the hydrologic and other design factors that will be the most
critical to the performance of the bioretention systems in response to interactive effects of climate change.

1. Introduction

Urban waters are widely impaired by excess nutrients and sediments
in the input stormwater, despite substantial efforts spent in stormwater
management and control in the surrounding watersheds (Hobbie et al.,
2017). Urban stormwater is a major contributor to nonpoint source
pollution in surface waters nationwide. As diffused nonpoint source
pollution is much more difficult to regulate than point source pollution,
stormwater is considered one of the most pressing water quality chal-
lenges of today (Wang et al., 2000; Hsieh and Davis, 2005; NRC, 2008).
Among many pollutants of concern, those commonly detected in urban

storm runoff are nutrients (nitrogen; N and phosphorus; P), which are
major culprits of eutrophication nationwide (Erickson et al., 2013),
suspended solids, heavy metals, and organics (Porcella and Sorensen,
1980).

As cities are expanding rapidly, proliferating the impervious foot-
print, natural hydrological flow paths resulting in absorption, filtering
and treatment of stormwater through soils is bypassed (Cook, 2007).
During high flow events, urban storm infrastructures can show failure,
leading to harmful combined sewer-storm-water overflows, con-
taminating surface waters by nutrients and pathogens (Kaye et al.,
2006) intended to be kept out of those very waters. Thus, newer
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strategies to address urban stormwater management are becoming in-
creasingly necessary to improve surface water quality. Low impact
development (LID) approach was therefore introduced in the 1990s in
Prince George’s County, Maryland as an alternative to conventional
stormwater management approach (LID Center, 2007). LID, more
broadly termed Green Stormwater Infrastructure (GSI), comprises
landscape design strategies that promote infiltration, filtration, soil
storage, evapotranspiration, groundwater recharge and/or re-use of
stormwater, while minimizing impervious cover and runoff (Davis,
2007; Roy et al., 2008; County, 1999; Hinman 2012).

Bioretention, a prominent type of green infrastructure, is increas-
ingly being used as a sustainable stormwater control measure in urba-
nized watersheds within the U.S. and abroad (Davis et al., 2009; Roy-
Poirier et al., 2010; Liao et al., 2017). The technology is an aesthetically
pleasing, sunken (approx.< 1.3 m deep) planted basin filled with
porous media that intercepts, filters, stores, and treats pollutant-laden
runoff conveyed as sheet flow from impervious surfaces (Cook, 2007).
Bioretention design allows for stormwater runoff to be treated for water
quality on-site, close to the source of origination (Hurley and Forman,
2011), via different physical (filtration, evaporation), chemical (sorp-
tion, ion exchange, precipitation), and biological (phytoremediation,
microbial-mediated transformation, transpiration) mechanisms, fa-
cilitated by the filter media (Davis, 2007; Feng et al., 2012; Liu et al.,
2014; Lucas and Greenway, 2007). Runoff is also detained and stored
temporarily in the bioretention media, and aboveground in the ponding
zone, and is released slowly to the surrounding soil via infiltration or an
existing storm sewer system. Integrating bioretention systems
throughout urban spaces (most commonly in roadsides, parking lots,
and streets) offer more opportunities to restore natural hydrologic
functions. Bioretention’s storage of stormwater in the landscape can
alleviate pressure on existing storm infrastructure by decreasing storm
flow velocities, and reducing peak discharge and downstream erosion
and flooding. Furthermore, ancillary benefits from bioretention include
wildlife and pollinator habitat, and enhanced urban biodiversity, and
aesthetics (County, 1999).

A growing body of literature has shown that bioretention systems
are effective water quality treatment devices with good removal capa-
cities for total suspended solids (Hsieh and Davis, 2005; Bratieres et al.,
2008; Hatt et al., 2009a), heavy metals (Davis et al., 2003, 2001; Hunt
et al., 2006), fecal coliform (Hunt et al., 2008; Passeport et al., 2009),
hydrocarbons and oil and grease (Hong et al., 2006). However, nutrient
removal performance (specifically for N and P) is more variable (Davis,
2007). Field studies have shown successful removal of ammonium
(NH4

+) and Total Kjeldahl Nitrogen (TKN) from runoff (Davis et al.,
2003; Birch et al., 2006; Dietz and Clausen, 2006; Hunt et al., 2006;
Hatt et al., 2009b; Passeport et al., 2009), but removal of ni-
trate+ nitrite (NOx), total nitrogen (TN), total phosphorus (TP), and
ortho-P have been shown in both lab and field studies to be highly
variable, and sometimes negative removals (or exports) of these nu-
trient forms have been reported (Davis et al., 2001; Hsieh and Davis,
2005; Birch et al., 2006; Davis et al., 2006; Dietz and Clausen, 2006;
Hunt et al., 2006; Van Seters et al., 2006; Bratieres et al., 2008; Hatt
et al., 2009b; Passeport et al., 2009).

This research evaluates water quality performances of seven road-
side bioretention cells receiving different vegetation, soil media, and
hydrologic (enhanced rainfall+ runoff (RR)) treatments in Burlington,
Vermont in the northeastern USA. The experimental design and its
treatment variables were informed particularly by concerns regarding
the elevated levels of P in the Lake Champlain Basin attributed to wa-
tershed inputs and internal cycling of phosphorus (P) from lake sedi-
ment bottoms, which causes algal and toxic cyanobacterial blooms in
the summer. The hydrologic treatment is informed by climate change
projections associated with frequent and intense rainfall events for
Vermont and other Northeastern states (Frumhoff et al., 2006; Pealer,
2012). Average daily precipitation is projected to increase between 5
and 10% (10% being an increase of 4 inches yr−1) by midcentury

(Hayhoe et al., 2007; Guilbert et al., 2014), and extreme precipitation
events (amount of precipitation that falls over five consecutive days)
are also likely to progressively increase over the century, i.e., 8% by
mid-century, and 12–13% by late century (Frumhoff et al., 2006).

Field studies such as the following are valuable as there is in-
sufficient number of field-performance data in the bioretention litera-
ture. Bioretention performance needs to be robust and responsive to
various physical site conditions/constraints, variability in storm sizes,
volumes and pollutant levels, plant survival, and non-steady environ-
mental conditions. Monitoring results from our study will be important
to understand how small-scale bioretention retrofits implemented
under constrained field conditions can provide stormwater controls,
and how their performance may vary based on different design attri-
butes, hydrologic conditions, and other environmental factors.

The specific objectives of the study were:

1) to characterize the composition of N and P species in bioretention
inflows and outflows in a roadside field study;

2) to characterize (A) stormwater volume and (B) pollutant retention
capacities of bioretention cells across various storm sizes;

3) to evaluate and compare bioretention cells (A) hydraulic perfor-
mances, (B) pollutant mass removal efficiencies (MRE), and (B)
event mean concentrations (EMCs) among vegetation, soil media,
and hydrologic treatments; and

4) to investigate whether environmental factors (precipitation depth,
antecedent dry period (ADP), seasonality), hydrological factors
(inflow volumes, inflow mass, peak flow, hydraulic loading ratio),
and treatments (vegetation, soil media, hydrologic), are significant
predictors of pollutant mass removal efficiencies.

2. Methods

2.1. Study site description

The study site consists of eight bioretention cells (Fig. 1) located on
both sides of a medium-traffic campus roadway at University of Ver-
mont (Burlington, USA). Monitoring of the bioretention cells was car-
ried out from May to November in the years 2015 and 2016. The cells
were constructed in November 2012 (Cording et al., 2017). Vegetation
was planted in May 2013 and was well established by the time this
study commenced in Spring 2015. Table 1 describes the design para-
meters of the bioretention cells. Each cell collects stormwater runoff
from road watersheds of varying sizes (30–120m2). Curb cuts along the
road route the runoff to a shallow rock-lined swale, which then directs
it to each bioretention cell’s “inflow” where water samples are col-
lected. The cells are rectangular with identical size (1.22 m wide by
3.05m long by 0.91m deep) and drainage configurations. From top to
bottom, the bioretention soil media is layered with two layers each
30.5 cm deep: the upper layer is a 60:40 sand compost mix (compost
derived from cow manure, food scraps, and wood shavings); below is a
pure sand layer (Fig. 2a). Below the sand media is a 7.6 cm-layer of pea
stone, and the bottom 23 cm of the cell is occupied by 5-cm diameter
stones or gravel. Two of the cells contain a soil additive treatment,
where the bottom 7.6 cm of the pure sand layer is replaced by Sorti-
veMedia™ (SM; Fig. 2b), described later in detail. The entire cell (sides
and bottom) is lined using an impermeable ethylene propylene diene
monomer (EPDM) liner to isolate the cell and prevent water exchange
with the underlying native soil and cross contamination of the water
quality. The liner also accounts for all the water volume and pollutant
loads for mass balance calculations. The bioretention cells are drained
using an underdrain pipe at one end of the cell, a 26-cm long, 15.24 cm-
diameter perforated PVC pipe that is placed 2.5 cm from the bottom of
the cell within the gravel layer. The underdrain is connected to a solid
PVC pipe outside the soil media where the effluent is sampled for water
quality analysis. The pipes are connected to the existing storm sewer
system. Additional details about construction of the bioretention cells
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and details regarding the monitoring infrastructure can be found in
Cording et al., 2017.

Burlington (44°28′33″N 073°12′43″W) has a humid continental
climate, with warm, humid summers and cold winters. The annual
mean temperature is 7.7 °C (45.9°F) and the average annual rainfall is
934mm (US Climate Data 2017). The historical averages here are from
year 1981–2010 and given by Burlington International Airport in South
Burlington, administrated by the National Weather Service.

2.2. Experimental design

Our study examines a combination of vegetation, soil media, and
hydrologic treatments assigned among eight bioretention cells. Unlike
the latter two, the vegetation treatment does not have a true experi-
mental control and comparisons are made between two pairs of cells,
each containing a different plant palette. The vegetation treatment has
two replicates per treatment: the low-diversity treatment (VL) contains
2 species, and the high-diversity treatment (VH) contains 7 species
(Table 1). All plants are native perennials and selected for several
reasons such as their tolerance of roadside conditions, road salts, de-
siccation and inundation. Plantings in the high-diversity treatment in-
clude native species with varying root depths to fill the bioretention

bed, and varying phenology so that, across the seven species, flowers
bloom throughout the growing season. In both cells, the plants senesce
in mid-October to mid-November, and begin to re-establish in early
May.

The second treatment is a soil media treatment: two of the cells (cell
3 and 4) contain an engineered, P-sorbing amendment called
SorbtiveMedia™ (Contech Engineered Solutions LLC, North Carolina).
This product was donated by its developer to this research trial, and
was not purchased with research funds, nor has the developer pre-
viously reviewed the results; there is no intention herein to advertise or
promote its use. The material consists of fine granules of Fe and Al
oxide, and is shown to have enhanced capacity for adsorption of dis-
solved P from influent water (Balch et al., 2013). In the two cells (cell 3
and 4) with this treatment, the bottom 7.6 cm of the sand layer is re-
placed by the SorbtiveMedia™ (Fig. 2b), termed SM from here on.

The third treatment is an enhanced runoff plus rainfall (RR) treat-
ment to increase precipitation and runoff input to three bioretention
cells by 15%, 20%, and 60% (cell 1, 5 and 3 respectively). The addi-
tional runoff and rainfall treatment the cells are receiving is propor-
tional to the paired cell’s watershed size differences (Table 2). All hy-
drologic treatments are assigned to cells with the high-diversity plant
mix (VH). Three cells have larger road watershed areas than their

Fig. 1. Bioretention cell at the University of Vermont, Burlington, USA. The cell receives road runoff via curb cuts along the road. (A) Shallow rock-line inflow swale, underlain by high-
density polyethylene (HPDE) plastic, conveys runoff into the cell’s weir. (B) Rainpan and attached PVC precipitation-distribution pipes. The rainpan is installed outside of the cell.
Rainwater from the corrugated pan drains into gutters, vertical downspouts, and to pipes that run horizontally along the length of the cell and contains perforations at the bottom to
deliver water evenly across the cell. Photo credit: Lindsay Cotnoir.

Table 1
Bioretention watershed and cell characteristics.

Characteristics Description

Watershed description Low to medium traffic paved asphalt road
Watershed area 30–120m2

Bioretention cell area 3.72m2 (40 ft2)
Bioretention maximum ponding depth 15.2 cm (6 in.)
Soil media depth 61 cm (2 ft)
Soil media characteristics 60:40 sand: compost (upper 30.5 cm; 1 ft), pure sand (lower 30.5 cm; 1 ft)
Pea stone depth 7.6 cm (3 in.)
Gravel media depth 22.9 cm (9 in.)
Underdrain system 15.2 cm (6 in.) diameter perforated PVC pipe
aSoil media available-P 27.08 ppm
Soil media CEC (top layer) 6.7 meq/100 g soil
Soil media OM (top layer) 1.99%
Soil pH 6.27−7.36
Soil media total C and N 1.6% C, 0.099% N (CN ratio of 15.7)
Vegetation types Low diversity palette: Daylilies ‘Stella d'Oro' (Hemerocallis spp.) and Switchgrass ‘Shenandoah' (Panicum virgatum)

High Diversity palette: Butterfly Milkweed ‘Tuberosa' (Asclepias tuberosa), Windflower (Anemone canadensis), Columbine (Aquilegia
canadensis), New England Aster ‘Purple Dome' (Symphyotrichum novae-angliae), Blue False Indigo ‘Capsian' and ‘Midnight Prairiebliss'
(Baptisia australis), Sneezeweed ‘Red+Gold' (Helenium autumnale), and Cardinal Flower (Lobelia cardinalis)

a Note: See Supplementary Materials section for detailed soil chemical parameters.

P. Shrestha et al. Ecological Engineering 112 (2018) 116–131

118



ambient counterparts: cell 1′s road watershed is 15% larger than that of
cell 2 (paired control), and cell 5′s road watershed is 20% larger than
that of cell 6 (paired control) (Table 2). The control, in this case, is high
diversity plot with no addition of a rainpan or SM. Additionally, cell 3′s
road watershed is 60% larger than that of cell 4 (control), both of which
have the SM treatment. Additional rainfall is delivered via a corrugated,
plastic “rainpan” (See Supplementary Materials) whose surface area is
designed to be 15%, 20% or 60% of the cell’s surface area of 3.72m2,
thereby extending the cell’s drainage area, and consequently the rain-
fall input by that much more. It is important to note that the con-
struction and placement of the cells were constrained by site conditions
including underground utilities and a variety of fill soils. Thus, the cells
are designed to drain varying watershed sizes although the cell di-
mensions and surface areas are identical.

2.3. Bioretention maintenance

Vegetation maintenance occurred periodically throughout the
growing season. Maintenance included removal of weeds every two to
three weeks and clipping of all the aboveground stems to within a few
inches of the soil line in early November before plant senescence, to
reduce likelihood of re-release of nutrients into the bioretention cell.
Other maintenance activities included clearing sediment, garbage, and
other coarse materials from the perforated gutters, curb cuts, and
maintaining rainpan infrastructure to allow water movement into the
bioretention soil surface, and setting up stakes and ropes outside the
bioretention cells to reduce foot traffic passing through the research
plots.

2.4. Stormwater sampling

Stormwater quality was monitored for 50 distinct storms (but total
of 121 storms among all cells) in 2015 and 2016. Some water quality
and soil analysis was also carried out in 2014. With eight autosamplers
(Teledyne ISCO 6712/7400, Lincoln, NE), we could simultaneously
monitor the inflow and outflow of four bioretention cells. Accordingly,
we monitored in two phases, with each phase containing two statisti-
cally paired cells (Table 2). However, equipment difficulties resulted in
the VH vegetation pair, Cells 1 and 2, not being monitored simulta-
neously. Rainfall data from Burlington International Airport, 4 km away
from the site, was used for collection of rainfall data.

2.4.1. Influent and effluent sampling design
A 90° v-notch weir, set in a cedar box, is installed in the inflow of

each bioretention cell. The weir box at the inflow can contain up to
5.5 L, before overflowing into the bioretention cell at the invert eleva-
tion of the v-notch. Notably, runoff from the road watersheds is first
channeled into a high-density polyethylene (HDPE) plastic and rock-
lined swale before entering the inflow weir; the swale serves as a
conveyance, but potentially functions as a “pre-treatment,” as sedi-
mentation of large particles may occur there.

The underdrain pipe in each cell outflow is outfitted with a Thel-
Mar plug-in weir (Thel-Mar, LLC, Brevard, NC). While the Thel-Mar
plug-in weir came pre-calibrated, the inflow weir was constructed and
calibrated in the lab experimentally (Cording et al., 2017). The area
where the water pooled behind the weirs was cleaned with hose water
before every storm to establish comparable starting conditions, and to

Fig. 2. (a) A typical cross section of bioretention soil media in UVM Bioretention Lab, (b) Cross section of bioretention soil amended with SorbtiveMedia™.

Table 2
Treatments in the experimental design for each of the eight bioretention cells.

*Cells inside the rectangular are paired cells, for example cell 2 is paired with cell 7 for the purpose of comparing vegetation diversity and with cell 1 for the purpose of comparing rainfall
rates.
*Cells highlighted in gray were monitored simultaneously in 2015 (May 10–July 1) and 2016 (July 15–November 4). Remaining cells were monitored simultaneously, but in reverse order
in 2015 (July 15–October 31) and 2016 (May 15–July 10) to cover all seasons. VL= low diversity plant mix, VH=high diversity plant mix, RR= enhanced rainfall + runoff,
SM=SorbtiveMedia™.
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clean the weirs of any previous storm residues. Water was filled up to
the v-notch, and the stage or “level” was referenced to be zero. Stage
values for both inflow weir boxes and ouflow Thel-Mar weirs were re-
lated to flow rates using weir-specific rating curve equations (Supple-
mental Table 1).

2.4.2. Water sample collection
Flow measurements were taken using calibrated v-notch weirs on a

1-min interval using a submerged probe flow module (Teledyne ISCO
720 module, Lincoln, NE), also known as pressure transducer. The
pressure transducer is sensitive to direct sunlight and temperatures
outside of 0°–71 °C, prohibiting winter sampling. Flow rates exceeding
0.94–1.17 Lmin−1 in the inflow (depending on the cell’s weir dimen-
sion) and 0.046 Lmin−1 in the outflow triggered sample events.

A mix of discrete and composite time-based sampling approach was
used to collect water samples every 4 and 2min at the inflow and
outflow, respectively. Twenty-four 1-l polypropylene bottles were in-
stalled in the samplers to collect composites of 3 samples per bottle,
switching bottles every 12min in the inflow and 6min in the outflow.
Composite was done to lengthen the sampling duration, in effort to
capture an entire storm event. Time-based samples are considered very
accurate at small time intervals (Harmel et al., 2003). A fine time re-
solution monitoring was deemed the best to capture, with greater fre-
quency, the temporal variabilities related with flow rate and pollutant
concentration change to best represent true loads over the course of a
storm hydrograph. Multiple sampling intervals were tested before de-
termining these intervals, e.g., 15- minute intervals with 2 samples per
bottle, and discrete samples at 30-min increments. Short time intervals
were chosen because the cells drain small watershed areas, and we
wanted to capture the initial time of concentrations (approx. 5–9min)
from smallest to largest watersheds (Cording et al., 2017). For each
bottle, 1-cm diameter suction tubing was used to draw 900-ml sample,
in 300-ml increments, from the influent, and 450-ml sample, in 150-ml
increments, from the effluent. All samples (up to 24 bottles per inflow
or outflow with 3 sampling intervals per bottle) were analyzed sepa-
rately to obtain a complete pollutograph.

2.5. Water quality analysis

Water samples were transported to the Agriculture and
Environmental Testing Laboratory within 24 h after the precipitation
event. Samples were analyzed for total suspended solids (TSS), nitrate/
nitrite (NOx), orthophosphate (ortho-P), total nitrogen (TN), and total
phosphorus (TP). Dissolved heavy metals (Copper (Cu), Zinc (Zn), Lead
(Pb), Cadmium (Cd), Chromium (Cr), Nickel (Ni)) concentrations were
also analyzed, some of which are not reported due to large number of
concentrations below the detection limit, which has occurred in other
studies (Dietz and Clausen, 2006; Hatt et al., 2009b).

Samples were analyzed per the test methods specified in the
Standard Methods for the Examination of Water and Wastewater
(APHA, 2005). TSS measurements included shaking the bottle and va-
cuum-filtering an aliquot of the original samples through pre-rinsed and
dried glass fiber filters. The filters retaining residue samples were oven
dried and dry weights taken. TSS mass was the difference between final
and initial dry weights. Results were expressed in concentration by
dividing the mass by the volume of aliquot drained. Dissolved nutrient
concentrations were analyzed after filtration through a 0.45 μm pore
size nylon mesh filter by flow injection analysis on an automated col-
orimeter (Lachat Instruments QuickChem8000 AE, Hach Inc., Loveland,
CO) using the Cd-reduction method for NOx, and ammonium molybdate
colorimetric method for ortho-P. TN and TP were analyzed by standard
persulfate digest on unfiltered water samples. A value of one-half of the
detection limit was used for any analyte below the detection limit
(Dietz and Clausen, 2006; Li and Davis, 2014). Heavy metal con-
centrations were determined using the inductively coupled plasma
optimal emission spectrometry (ICP-OES, Optima 3000DV, Perkin

Elmer Corp, Norwalk, CT, USA) after filtration through a 0.45 μm filter
and acidification with concentrated hydrochloric (HCl) acid. For par-
ticulate metals in the runoff (measured in 2014), approximately
1000mL of sample was filtered through Whatman 47-mm standard
glass fiber filters to collect suspended sediments. Nitric acid digestion
procedure was carried out on the residue filters, and filtrate was ana-
lyzed for heavy metals.

2.6. Pollutant loads and mass removal efficiency

Pollutant cumulative mass at the inflow and outflow was calculated
for each rainfall event by taking the integral of the product of con-
centrations and flow rates over the total time of the flow during an
event (Davis et al., 2006).

∫= C t Q t dtTotal Pollutant Mass ( ) ( )
t

0

r

(1)

where:
C(t)= concentration
Q(t)= runoff flow rate
Limits of integration refer to time 0 (runoff initiation) and time tr

(time at which runoff ceases).
Pollutant mass removal efficiency (RE) was calculated based on the

following formula: RE (%)= (mass in –mass out)× 100/mass in (Dietz
and Clausen, 2006). If the value is positive, the system retains pollutant
mass; if the value is negative, the system exports/leaches pollutant
mass.

Event mean concentration (EMCs) was also calculated for individual
storms by dividing total pollutant load washed off during storm event
by the total runoff volume over that duration (Lee and Bang, 2000).

∫

∫
= =EMC Total Pollutant Mass

Total Runoff Volume

C(t)Q(t)dt

Q(t)dt
0

t

0

t

r

r

(2)

2.7. Soil CN content, plant tissue nutrient content, and root biomass

Soil C: N ratio was measured from all cells by grinding oven-dried
soils at 60 °C into a fine powder and combusting in the CN analyzer.
Plant tissue samples were taken in July and August in 2015 and 2016
respectively to determine tissue nutrient content of total C, N and P.
Plant tissues (only leaves in 2015, and all above-ground plant parts
which included stems, leaves, pods, flowers in 2016) were collected
from at least two different individuals of all species from VH and VL
treatments only. Samples were composited and dried in 60 °C oven for
3 days. Samples were ground into fine powder, and analyzed in tripli-
cates for total C and N by a combustion method in a CN elemental
analyzer (Flash EA-1112, CE Elantech, Lakewood, NJ). Total P was
determined on ICP-OES following a nitric acid-microwave digestion.
Additionally, plant health and survival/absence and percent cover in
each cell was also recorded intermittently throughout the monitoring
period. Root biomass was measured in November 2014 from fresh soil
cores taken from up to 45 cm depth from three equally divided transects
from the cells’ (VH and VL treatments only) center. Final root biomass
was expressed per volume basis (i.e., root biomass density in mg cm−3

soil).

2.8. Statistical analysis

No significant differences for water quality and soil parameters were
found between the VH replicates, nor between the RR15 and RR20
bioretention cells. Therefore, data were averaged for the VH replicate
cells, and for the VH RR15 and RR20 cells. Each sampling event was
considered a replicate for statistical purposes (Winston et al., 2013).
Influent and effluent concentration and loads differences within each
cell were statistically compared. The difference between paired “in”
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and “out” data from each event was tested for normality using the
Shapiro-Wilk goodness-of-fit test. A Wilcoxon Signed Rank test for
matched pairs, a non-parametric analogue to the paired t-test (ZAR,
1999), was used, due to a non-normal distribution of the differences
(Davis, 2007; Winston et al., 2013). Whenever the paired sample t-test
is applicable, the Wilcoxon Signed Rank test for matched pairs is also
applicable (ZAR, 1999). There were difficulties transforming the ne-
gative differences to fit a normal distribution, and this test is appro-
priate because it does not require the data to fit a certain distribution.
Results from Wilcoxon matched pair test were nevertheless compared
against the paired t-test, and both tests were found to be comparable
with each other in significant trends. Results presented are from the
Wilcoxon test. Statistical analyses were performed using JMP Pro
12.0.0 (SAS Institute Inc., Cary, NC, 2015). All results are reported as
mean with standard deviation or standard error. A criterion of 95%
confidence (α=0.05) was used.

An attempt was made to relate effluent peak flow rates and volumes
to five predictor variables such as storm size, inflow peak flow rate,
inflow volume, antecedent dry weather period (ADP), and month of the
year using multiple linear regression analysis in R software version
3.1.1 (www.r-project.org).

A multiple linear regression model (Hatt et al., 2009b) was used in R
software version 3.1.1 (www.r-project.org) to evaluate the correlation
of nine to ten predictor variables with effluent peak flow rates and
volumes, and percent volume and pollutant mass RE across the entire
monitoring duration. The nine predictors included: environmental
parameters such as precipitation depth, antecedent dry weather period
(ADP), seasonality, hydrological factors such as inflow volumes, peak
flows (which could affect pollutant mobilization rates), hydraulic
loading ratio, and the different treatment variables (soil, vegetation,
and RR). The tenth predictor, which was the pollutant loads infiltrating
into the cell, was included in the model to predict pollutant load RE. All
the above predictor variables were included in the regression model as
independent or explanatory variables at the start, while effluent peak
flow and volume, and percent volume and mass RE was input as a
dependent variable. Seasons were divided into spring (May and June),
summer (July and August) and fall (September to November) and input
as categorical. The soil, vegetation, and RR treatments were input as
binary categorical, while the rest of the variables were input as con-
tinuous. The variables that were found to be non-significant were
eliminated from the model, and the model was re-run. Parameter esti-
mates of the final chosen model are presented containing slope esti-
mates, p values, and model R2. For regression models, α=0.1 was
considered as marginally significant.

3. Results

3.1. Storms sizes and pollutant loadings

Fifty individual storms were sampled from May to November in the
years 2015 and 2016 (23 and 27 storms respectively) that produced
both inflow and outflow samples. Storm sizes in 2015 ranged from
0.3 mm to 85mm (0.01–3.3 in.), with a median at 15.2 mm (0.6 in.)
precipitation depth (Fig. 3). Storm sizes in 2016 ranged from 1.27mm
to 39mm (0.05–1.5 in.), with 50% of the storms below 10mm (0.4 in)
(Fig. 3). 2016 was a dry year relative to 2015, characterized by storm
events of lower magnitude along with longer antecedent dry periods
between consecutive storm events. Overall, antecedent dry periods for
the storms sampled ranged from minimum 0 to maximum of 13 days.

Runoff resulting from 90th percentile rainfall is equivalent to the
first inch (25.4 mm) of rainfall in a 24-h storm event (VSMM, 2016).
One inch is the water quality design storm criteria in Vermont for
stormwater best management practices (VSMM, 2016). Thus, storms
above and below 25.4 mm (1 in.) were characterized as large and small
storms respectively.

Across all road watersheds and their respective bioretention cells,

96 out of 121 storms (79%) that were monitored across all cells were
small storms, and 25 storms (21%) were large storms. The largest 21%
of the storm events (ranked by precipitation depth) accounted for 68%
of the total TSS loadings, 45% TN, 37% NOx-N, 50% TP, and 39% of
PO4 loadings (Table 3), indicating that several of the pollutants, espe-
cially TSS and TP, were transported in just a fewer larger events.

3.2. Nitrogen and phosphorus species composition in storm runoff and
bioretention effluent

Among over 800 samples collected at the bioretention research site,
TN in storm runoff was largely composed of TKN (Organic N+NH3-N
or TN−NOx-N, 63%), while NOx only comprised 37% of the TN. When
looking at P species, 48% of the TP was ortho-P, while the remaining
52% was particulate-P (part-P; TP−ortho-P). While there were no
dramatic changes in the composition of N species in the effluent relative
to the influent, P species composition changed dramatically from in-
fluent to effluent (Fig. 4). A much greater portion of the effluent total P
was ortho-P relative to part-P (69% vs. 31% respectively).

3.3. Volume and pollutant retention capacity of bioretention in various
storm sizes

Storm sizes resulting in 100% volume retention ranged from 1.3mm

Fig. 3. Distribution of precipitation depth (mm) values in year 2015 (N=23 storms) and
2016 (N=27 storms) for the storm events sampled from May to October/November in
Burlington, Vermont. Straight lines indicate median and interquartile range, dot indicates
mean. Area of the violin plot is proportional to count (number of storms).

Table 3
Cumulative volume and pollutant influent loadings, and percentage of total loadings
accounted by small (≤1 in. depth; n= 96) and large storms (> 1 in. depth; n=25) for
the storm events sampled spanning May to October/November 2015 and 2016 in
Burlington, Vermont.

Volume NOx TN Ortho-P TP TSS

(L) (mg) (g)

Cumulative volume and load
Small (79%) 35389 11593 27348 2715 5130 475
Large (21%) 27454 6665 22521 1733 5198 997

Volume and load contribution (%)
Small 44 63 55 61 50 32
Large 56 37 45 39 50 68
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(0.05 in.) up to 39.4mm (1.55 in.). Among these storms, 37 events, out
of 121 monitored, among all bioretention cells resulted in no outflows
(100% volume and pollutant retention in this case), and all but an in-
dividual 39.4mm (1.55-in.) storm were small storms (Fig. 3).

For all pollutants, mean percent retention (for all cells combined)
was always higher for small storms relative to large storms, but storm
size did not make a difference for percent TSS retention (Table 4). Mean
TSS removal was always over 90%. When comparing median to mean
values, the median retentions were always greater for all parameters
(Table 4). Over 60% of dissolved and total nitrogen species were re-
tained by bioretention cells in small storms, whereas large storms al-
ways showed negative removal for all nutrient species, especially with
mean dissolved P being greatly negative. When examining the medians,
only the dissolved N and P were exported in large storms, while positive
removal was observed for everything else (Table 4).

3.4. Hydraulic performance (peak flow and volume) of bioretention cells

During 2015 and 2016, flow rates and runoff volumes were col-
lected from each of the seven bioretention cells. On average, all cells
reduced both peak flows and cumulative volumes, and no surface
overflow was observed. The average peak flow rate reduction was 91%
across all cells (range: 86–96%). Of the nine predictor variables, peak
outflow rates were most strongly correlated to peak inflow rates, ex-
plaining most of the variation alone (p < 0.0001, R2=0.47, Fig. 5,
compared to R2= 0.56 for the whole model). Additionally,

precipitation depth, ADP, and VH treatment also significantly and po-
sitively correlated with peak outflow rates (p < 0.0001, p=0.012,
p=0.024 respectively) out of the nine variables in the model.

On average, 75% of the inflow volume was retained (range:
48–86%; Table 5) by the bioretention cells. Outflow volumes were
strongly proportional with inflow volumes (R2=46%, p < 0.0001,
Fig. 6), peak inflow rates (R2= 47%, p < 0.0001), and precipitation
depth (R2=20%, p < 0.0001). The three predictor variables together
explained 60% of the variation in the outflow volumes, and were po-
sitively significant. Similar to results indicated by Hatt et al., 2009b, our
results suggest that outflow volumes expected from bioretention cells
could be modelled using inflow volumes as one of the strongest pre-
dictor variables (Hatt et al., 2009b). Caution should be taken however
to avoid extrapolating results to larger storms that may be over 4 in-
ches, which were not observed in the study, as the linear relationship
may not hold true for these storms.

Volume retention was mostly positive, except for a few rare occa-
sions. Four storms (two in June; VH and VH SM cells, and one in July
and October each; VHRR and VH cells) had greater outflow volumes
relative to inflow volumes. The June and July storms had a total 3-day
antecedent period rain of 2.76, 1.68, and 1.04 inches respectively,
suggesting that media may have been somewhat saturated prior to
storms, and flushing of retained water from previous storm may occur
along with “new” water (Subramaniam et al., 2015) in which outflow
exceeded inflow. Passeport et al. (2009) also measured greater outflows
than inflows on certain occasions. For the October 29 storm, small
volumes of inflow and outflow were observed (only 2.63 vs. 3.1 L re-
spectively) with a 3-day antecedent rainfall of 0.62 inches. Season
(excluding winter) did not have any significant effects on outflow vo-
lume or percent volume retention. Thus, the effects of hydrological
factors on the outflow generated from these bioretention cells are more
important than seasonality.

Conversely, percent volume retention did not show any strong
pattern with inflow volumes (Fig. 6). Precipitation was the only vari-
able out of the nine predictors that showed significant and negative
correlation with volume retention (p=0.041, R2= 3.4%, compared to
R2=11% for the full model).

3.5. Influent and effluent pollutant concentrations

The change in pollutant concentrations from influent to effluent
from bioretention cells were highly variable and treatment dependent.
Across all cells, mean influent concentrations for TSS, NOx, TN, ortho-P,
and TP were in the following order: 28, 0.661, 1.32, 0.139, and
0.256mg L−1. Mean effluent concentrations for the five pollutants were
8.9, 1.3, 2.7, 1.3, 1.4mg L−1 respectively. TSS was the most effectively

Fig. 4. Nitrogen and phosphorus composition for storm inflows and outflows (for matched samples only) monitored across all storm events from May to October/November 2015 and
2016 (802≤n≤ 843). Numbers beside each box show the percent mean, and error bars are ± 1 SE. The total bars represent total nitrogen (TKN+NOx) and total phosphorus (Part-
P+Ortho-P).

Table 4
Mean (SE, in parenthesis) and median (IQ, in paranthesis) percent loads reduction for all
cells combined for small (≤1 in. depth; n=96) and large (> 1 in. depth; n= 25) storms
for the different water quality parameters across all cells that was sampled spanning May
to October/November 2015 and 2016 in Burlington, Vermont.

Parameter Storm Size Mean (SE) Median (IQ)

Volume Small 83 (3) 98 (21)
Large 70 (5) 77 (34)

NOx Small 77 (6) 100 (10)
Large −272 (127) −58 (440)

TN Small 67 (11) 99 (18)
Large −24 (34) 40 (152)

Ortho-P Small −34 (40) 99 (26)
Large −1199 (635) −84 (719)

TP Small −35 (19) 99 (22)
Large −285 (133) 5 (365)

TSS Small 93 (2.9) 100 (2)
Large 93 (2.7) 97 (7)
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retained pollutant by all bioretention cells across all storms. All treat-
ments lowered influent TSS concentrations, but the reduction was only
significant for VL, VH and VH RR treatments (Fig. 7).

Different media configuration resulted in varying P removals. The
two cells amended with the SM additive reduced ortho-P concentrations
in the effluent (significant for VH SM cell only), in contrast to all other
cells that did not receive the additive (Fig. 7). While the SM cell also
significantly reduced influent TP concentrations, lower (but not statis-
tically significant) effluent TP concentrations were measured in the
SM+RR60 cell relative to influent. SM cell was the only cell that re-
sulted in lower effluent NOx concentrations. Export of TN concentra-
tions in the effluent was observed for all other cells (Fig. 7).

Overall, the dissolved metal concentrations for Cu, Zn, Cr, Pb, and
Co were low, and non-detectable at times, with influent mean values,
pooled across all cells, of 13.7, 148, 11.1, 9.1, and 16.5 μg L−1 re-
spectively. For those same elements, effluent concentrations were 21.2,
144, 10.7, 8.9, and 17.8 μg L−1 respectively showing no notable change
in concentration within bioretention cells, except for a small export of
Cu. Particulate metal concentrations for the above elements were much
lower than their dissolved constituents: below 19 μg L−1 for influent,
and below 3 μg L−1for effluent concentrations, indicating positive

retention within the bioretention cells.

3.6. Cumulative pollutant mass and EMC removal efficiency from
bioretention cells by treatment

Cumulative (over the study duration) pollutant load retention from
the bioretention cells varied with pollutant types and treatments
(Table 5). Mass removal efficiencies were calculated on the cumulative
loads (Table 5). Overall, TSS loads were well retained across all cells
(range: 89–99%). Interestingly, the two SM cells retained all four nu-
trient pollutants based on loads for NOx, TN, ortho-P and TP (over 20%
removal for N species, and over 80% for P species; Table 5). All other
cells showed negative removals for P species, while N species retention
varied depending on the treatment (Table 5). Positive retention of TN
was also observed from VL and VH cells. VL showed positive retention
for NOx as well (Table 5).

We examined the EMC data to determine statistical differences be-
tween the influent and effluent for the different treatments, by con-
sidering each sampling event across the whole monitoring duration as a
replicate. Significant reduction in TSS EMCs was observed for all cells
(Fig. 8). Ortho-P and TP EMCs were found to be significantly lowered

Fig. 5. Relationship between peak inflow and peak outflow rate (Lmin−1)
for the storm events sampled spanning May to October/November 2015
and 2016 in Burlington, Vermont.

Table 5
Reduction of overall cumulative volume and pollutants from inflow to outflow from the different bioretention cells, and calculated percentage volume and mass removal efficiency (% RE)
for the storm events sampled spanning May to October/November 2015 and 2016 in Burlington, Vermont.

aCell n In Out % RE n In Out % RE

VL Volume (L) 17 7955 1580 80 TSS (g) 13 164 14 92
VH 37 26613 4693 82 31 266 3 99
VH RR 35 11668 2678 77 28 358 38 89
VH SM 16 4295 2217 48 12 65 6 91
VH SM RR60 16 12423 1791 86 13 620 20 97

VL NOx (mg) 14 1440 1414 2 TN (mg) 12 5955 3256 45
VH 31 4810 6213 −29 28 15936 8823 45
VH RR 29 3338 3416 −46 25 7198 6159 −14
VH SM 12 4033 1802 55 11 5910 3689 38
VH SM RR60 13 4677 3614 23 13 14649 6305 57

VL Ortho-P (mg) 14 628 3578 −470 TP (mg) 14 1141 4430 −288
VH 31 784 5365 −584 30 3050 5106 −67
VH RR 29 1451 4736 −226 26 1902 4449 −134
VH SM 12 643 37 94 12 1067 154 86
VH SM RR60 13 1303 79 94 13 3163 190 94

aVH=vegetation high diversity, RR= enhanced rainfall + runoff, SM=SorbtiveMedia, VL= vegetation low diversity, n= number of storm events.
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by the two SM cells only, irrespective of the RR treatments. More ortho-
P and TP were present in the outflow than the inflow for the non-SM
cells (mean negative cumulative mass retention: −427%, −163%, re-
spectively; Table 5), with varying significances for those cells (Fig. 8).
The SM treatment also lowered NOx (significantly) and TN EMCs
(Fig. 8). The non-SM cells show mixed results with respect to nitrogen
(Fig. 8).

3.7. Factors affecting mass removal efficiencies of the different pollutants

Ten variables were input into a multiple linear regression model to
better assess the various factors influencing pollutant removal by
bioretention cells. For NOx and TN, the observed variation in load

reduction was a function of the variation in precipitation depth
(p < 0.0003), inflow volume (p= 0.002 and 0.01 respectively), peak
inflow discharge (p < 0.003), and seasonality (p=0.1 and 0.04 re-
spectively), with a model R2 of 28% for NOx and 24% for TN (Table 6).
Out of the ten variables that were selected to explain the total variation
in ortho-P removal, precipitation depth, seasonality and peak inflow
discharge were highly significant (p=0.002, 0.007 and 0.02 respec-
tively). Inflow volume (p=0.06) and soil media treatment were mar-
ginally significant (p= 0.08). Together these variables explained 20%
of the total variation. For TP, multiple predictor variables were highly
or marginally significant, including precipitation depth (p=0.0006),
seasonality (p < 0.0001), peak inflow discharge (p= 0.0004), ADP
(p= 0.004), inflow TP mass (p= 0.001), and soil treatment

Fig. 6. Relationship between outflow volume (black circles) and volume
reduction (gray circles) with inflow volumes for the storm events sampled
spanning May to October/November 2015 and 2016 in Burlington,
Vermont. Solid line represents linear regression line between outflow
volume and inflow volume. Dotted line represents linear regression line
between volume retention and inflow volume.

Fig. 7. Influent and effluent pollutant concentration (mg L−1) during storm events sampled spanning May to October/November 2015 and 2016 in Burlington, Vermont. Significance on
the difference between influent and effluent EMC concentrations were determined by Wilcoxon Signed Rank matched pairs test for non-normal data. Underlined asterisk on the shaded
gray bars indicate significance at p < .05. Smaller black dots indicate outliers and red dots indicate mean. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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(p= 0.06), explaining 40% of the total variation (Table 6). None of the
variables were influential predictors of TSS removal efficiency, except
for soil media (p= 0.01) and hydraulic ratio (p=0.05), but these
predictors only explained as little as 7% of the variation in TSS removal,
arguably making them poor model predictors.

3.8. Soil and plant nutrient concentration, root biomass density

Soil C and N content consistently decreased in all cells from year
2014 to 2016 (Table 7). An increase in the CN ratio was observed in
2016 as N decreased more than C content. Plant tissue N concentrations
were approximately 6–7 times higher than P concentrations (Fig. 9),
which is typical (Tanner and Headley, 2011). Leaf N concentrations
were greater than “all plant parts” N concentrations for all species,
while for P, this varied with species. Hemerocallis and Symphyotrichum
had the highest tissue N concentrations. Symphyotrichum also had the
slightly highest P concentrations (Fig. 9). Root biomass density between
VH and VL treatments were not significantly different, but slightly
greater density was measured in the VL treatment (0.664 vs.
0.556mg cm−3 soil).

4. Discussion

4.1. Stormwater N and P composition

The overall composition of N and P species and their concentrations
in influent stormwater measured at our bioretention site in Burlington,

Fig. 8. Influent and effluent pollutant event mean concentrations (EMC; mg L−1) during storm events sampled spanning May to October/November 2015 and 2016 in Burlington,
Vermont. Significance on the difference between influent and effluent EMC concentrations were determined by Wilcoxon Signed Rank matched pairs test for non-normal data. Underlined
asterisk on the shaded gray bars indicate significance at p < .05. Smaller black dots indicate outliers and red dots indicate mean. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Table 6
Significant predictors of regression models for pollutant mass removal efficiencies where (+) and (−) signs indicate the direction of the intercepts and slope estimates.

Equation N Model p-value Model R2

NOx y= 203− 11.7×precipitation depth (mm)+0.197× inflow volume (L)− 2.48× peak inflow rate (Lmin−1)− 91.3× season
(Spring versus Fall)

97 < .0001 28%

TN y=116− 3.3× precipitation depth (mm)+0.07× inflow volume (L)− 1.15× peak inflow rate (Lmin−1)− 44× season (Spring
versus Fall)

87 .0003 24%

PO43- y= 604−34.6× precipitation depth (mm)+0.596× inflow volume (L)− 9.95× peak inflow rate (Lmin−1)+ 297× soil media
present−709× season (Spring versus Fall)

98 .0017 20%

TP y=233− 7.27×precipitation depth (mm)− 2.6× peak inflow rate (Lmin−1)+ 0.824× inflow TP mass (mg)+70× soil media
present− 42×ADP (days)− 202× season (Spring versus Fall)

93 < .0001 40%

Table 7
Soil total C and N content (g kg soil−1), and C/N ratios measured once per year in 2014
and 2016 from the bioretention soil media in Burlington, Vermont.

2014 2016

aCell Total C Total N C/N ratio Total C Total N C/N ratio
(g kg soil−1) (g kg soil−1)

VL 18.36 1.69 10.9 14.17 0.9 15.7
VH 17.78 1.63 10.9 16.66 1.06 15.8
VH RR 18.90 1.66 11.4 17.355 1.15 15.1
VH SM 15.57 1.49 10.4 14.65 0.94 15.6
VH SMRR60 17.34 1.64 10.6 13.76 0.82 16.8

aVH=vegetation high diversity, RR= enhanced rainfall + runoff, SM=SorbtiveMedia,
VL= vegetation low diversity.
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Vermont over 50 storm events were in the mid-range for NOx and TN,
and high range for ortho-P and TP compared with other urban storm-
water findings in the literature (Table 8). Overall, P concentrations
measured were much lower (approx. five times) than N concentrations,
which is typically the case in urban stormwater (Pitt et al., 2003; Dietz
and Clausen, 2006; Winston et al., 2013). TSS was comparatively lower
in this research (Table 8).

Median stormwater N and P composition (i.e. proportion of dif-
ferent “species” of each nutrient) in our work align with a few other
studies. For example, Taylor et al. (2005) found very similar median
numbers in Melbourne, Australia where 30% of the TN (1.8 mg L−1) in
the storm runoff was NOx (0.54mg L−1), compared to the reported 40%
in our study (TN and NOx: 0.933 and 0.372mg L−1 respectively)
(Table 8). Taylor et al. (2005) reviewed the international stormflows
from residential, commercial, industrial, parkland landscapes in various
cities with separate stormwater systems (Duncan, 1999) and reported
that only 24% of TN was attributed to NOx (this is based on means).

To put our study into a more local context, our N and P species
median data were also compared to a study conducted by Pitt et al.
(2003) which examined stormwater outfall samples from over 200
municipalities nationwide in the U.S. covering mixed land uses (re-
sidential, mixed residential, commercial, industrial, institutional,
freeway) and comparable results were found. 25% of TN (2.36mg L−1)
was composed of NOx (0.6 mg L−1; Table 8). NH4

+ proportion was
smaller, at 19% (0.44mg L−1) and 9% (0.17mg L−1), while greater
than 40% of TN was made up of dissolved and particulate organic N in
the in the Pitt et al. (2003) and Taylor et al. (2006) studies respectively.

From the evidence in the international literature for urban stormwater
(Duncan, 1999), we can assume that ammonia may only constitute a
small proportion of TN in our data, but we cannot separately quantify
the proportions of organic N that are in dissolved (DON) or particulate
(PON) forms, apart from concluding that they together may make up
majority of the TN. PO43- made up 49% of TP compared to 44% in the
Pitt et al. (2003) study, with little variation in the concentration values
(Table 8). In fact, number of studies have measured a greater propor-
tion of soluble ortho-P making up TP in influent stormwater (range:
44–71%, Table 8).

4.2. Importance of hydrology on volume and pollution retention capacity of
bioretention cells

Our data shows that bioretention systems exhibit a relatively higher
treatment capacity for small storm events because of increased volume
retention and subsequently reduced outflow volumes (Table 4). Com-
plete capture of small storms was observed in the study, e.g., 31% over
121 storms monitored. (Davis, 2008) reported complete capture of 18%
of 49 storms, all from smaller storm events, and overall delayed times to
effluent peak flows. In this study, bioretention was also functional at
retaining portion of large storm runoff volumes (70% mean volume
retention; Table 4) from the roads. This shows that bioretention has the
capacity to maintain predevelopment hydrologic regimes in urban
areas, and by keeping pollutant-laden runoff from entering the sewer,
alleviate pressures on existing storm infrastructure. It is also likely that
the existence of the shallow swale which resulted in initial abstraction

Fig. 9. Plant tissue total nitrogen (N) and total phosphorus (P) concentrations in samples pooled from all aboveground plant tissues such as leaves, stems, flowers and pods (left), and only
leaves (right) of the different bioretention plant species in Burlington, Vermont.

Table 8
Summary statistics (mean, median) of storm runoff concentrations for Burlington data (125 storm events) compared with other studies within the US and Australia. Concentrations
reported are mean unless stated otherwise.

Stormwater input concentrations (mg L−1)

Watershed Land use Reference Region NOx TN Ortho-P TP TSS

Roadway This research (mean, median) Burlington 0.661, 0.372 1.32, 0.933 0.139, 0.105 0.256, 0.214 28,
18

Mixed land use Pitt et al. (2003) (median) Nationwide 0.6 2.36 0.12 0.27 63
Interstate highway

(pre-retrofit)
Winston et al. (2013) North Carolina 0.2 1.05 0.12 0.17 30

Parking lot, maintenance building, picnic area (pre-
retrofit)

Winston et al. (2013) North Carolina 0.12 1.01 0.13 0.26 216

Municipal parking lot Hunt et al. (2008) North Carolina 0.41 1.68 na 0.19 49.5
Urban catchments with mixed land use Taylor et al. (2006) (mean,

median)
Melbourne, Australia 0.74, 0.54 2.13, 1.8 na na na

Roof Dietz and Clausen (2006) Connecticut 0.9 1.6 na 0.009 na
Shopping center (G1 cell) Hunt et al. (2006) North Carolina 0.34 1.35 0.05 0.11 na
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of storm runoff and entrapment of pollutants, a portion of storm volume
and pollutants do not make it to the cells’ inflows in small storms, if at
all, until a bigger big storm flushes them through the cells. Treatment
capacity for nutrients, especially dissolved ones, is challenged under
changing hydrologic conditions, e.g., for storm sizes greater than
25mm (1 in.) (Table 4). The challenges of dealing with dissolved nu-
trients under larger storm events (either longer duration or greater
intensity) is that water and nutrients can bypass sorption capacity of the
subsoil layers and their susceptibility of leaching from the soil media
can greatly increase, particularly when the media is predominantly
sand (Djodjic et al., 2004) mixed with compost like here. While parti-
culate pollutants are primarily removed by physical filtration, dissolved
pollutants are removed by biochemical (denitrification) or physio-
chemical (sorption) processes, which require certain soil conditions and
retention times in the media.

4.3. Cumulative loads and EMC-based treatment effectiveness

This study selected experimental treatments to evaluate certain
design parameters: vegetation, media additives, and hydrologic regime.
All treatment cells performed consistently well for TSS with an average
(± SD) MRE of 94 ± 5% (Table 5), and significant effluent EMC re-
duction (Fig. 8). TSS load removal reported in other field bioretention
studies range from 60 to 97% (Roseen et al., 2006; Hunt et al., 2008;
Hatt et al., 2009b). TSS is removed via physical filtration of the parti-
culates and colloids during percolation through the soil profile. The
bioretention cells were consistently effective in removing TSS irre-
spective of the storm sizes, ADP, peak influent discharges, runoff vo-
lumes and influent loads amounts, and treatments. Though the cells are
functioning well for TSS at present, monitoring long-term removal ef-
ficiency is critical, as soil matrix characteristics are may change with
time due to influx of sediments, and influence of vegetation, stormwater
input, soil moisture changes, and climate.

The soil media additive treatment was the most effective at im-
proving effluent water quality regarding nutrients. P removal effi-
ciencies were highly dependent on the soil treatment. Only the SM
treatments, irrespective of whether there was added rainfall and runoff,
removed ortho-P, TP cumulative loads (94%, 90%) and EMCs from the
influent (Table 5 & Fig. 8 respectively), despite the relatively low P road
runoff input to the cells (Figs. 7 & 8). The SM additive cells interestingly
also removed both NOx and TN loads (39% and 48% respectively) and
EMCs except for the slight export of average NOx and TN EMC observed
from the SM+RR60 cells (Table 5 & Fig. 8). This cell with the slight
export also received approximately 3 times more influent runoff
(Table 5) and average (± SD) peak discharge (47 ± 52 vs.
14 ± 27 Lmin−1; Appendix B) than its control SM cell, which most
likely contributed to increased N leaching from the bioretention media.
Although removal efficiencies for N by the SM treatment were lower
relative to P, the added N removal benefit provided by the additive is
promising, and not something that was anticipated. Adsorption of
NH4

+ ions to iron and aluminum oxide and hydroxide ions (Westerhoff
and James, 2003; Belchinskaya et al., 2013) in the additive layer could
have reduced NOx formation via nitrification. It is also possible that
concurrent nitrification/denitrification within the soil microsites
(Parkin, 1987; Robertson and Tiedje, 1987) and within same soil ag-
gregates (Stevens et al., 1997) removed portion of the NOx. It is critical
to continue testing the long-term field performance of the additive to
understand what service lifetime it carries before reaching P saturation
potential.

The net retention of nutrients achieved by the bioretention systems
was mostly through reduction in runoff volumes, rather than reduction
in the actual concentrations of the input runoff, except for the SM
treatments that removed concentrations of either N or P, or both
(Fig. 7). While it is observed that the SM treatments consistently had
positive effects on P removal based on all the metrics examined (loads,
EMCs, and actual concentrations), the removal results for N species

were inconsistent across the metrics, particularly for cells that did not
receive the SorbtiveMedia™. Multiple linear regression results also
support this conclusion, as design treatment was not a significant pre-
dictor of N load removal, while the SM treatment was a marginally
significantly positive function of P load removal (Table 6). Although the
SM treatment was not a significant predictor for N removal, the fact that
it generally had a consistently positive effect on N removal across all
metrics may indicate that it is somewhat promising for N, as it is greatly
promising for P. It can be concluded that neither the vegetation nor RR
treatments on EMC-based N removal were significantly different, with
the exception that VL significantly exported TN EMCs to the effluent
(Fig. 8). However, examining the EMCs (Fig. 8) and loads (Fig. 7) data
in combination, the effects of vegetation and RR treatments seem to be
irrelevant or inconsequential compared to the soil media effects, which
appears to be largely governing the nutrient balance from the cells. The
VH and RR treatments were overlaid on a soil composition and con-
figuration that was identical among cells. The large amounts of com-
posts that the media contained could have dampened the possible ve-
getation and RR effects. Additionally, for bioretention of the depth and
configuration utilized in the study, it can be concluded that a 15%–20%
changes in hydrologic regime may alter loading patterns (Table 5) and
increase variability in the effluent (Fig. 8), albeit not significantly.

We have now attributed nutrient export from the cells to the pre-
sence of excess compost in the soil media profile, which has also been
known to occur in laboratory studies (Mullane et al., 2015; Hurley
et al., 2017). Compost is a rich organic matter nutrient source, and its
input to soil enhances C, N, and P mineralization (Tabatabai and Dick,
1979; Busby et al., 2007) due to the presence of active microbial bio-
mass (Li et al., 2004; Goberna et al., 2006), converting more stable
pools of organic N and P to soluble inorganic forms (Vitousek and
Matson, 1988; Escudero et al., 2012) that are easily transportable.
Nutrient transformations from mineralization continues to occur be-
tween storm events in the soils layers, and the soluble nutrients that are
generated as a result are mobilized downwards by the next high flow
event. This is particularly true when the initial nutrient content of the
media is high (Hunt et al., 2006; Clark and Pitt, 2009). In our study, net
N mineralization rates (± SE) estimated from the upper soil layers
averaged 190 ± 14mg kg dry soil−1 per year−1, while net N ni-
trifications rates averaged 134 ± 16mg kg dry soil−1 per year−1 from
the ambient cells (See Supplementary Materials). Although the total soil
N content has decreased over the years (Table 7), due to the “slow
nutrient release” nature of composts, it is possible that nutrient mi-
neralization by microbes (Connell et al., 1995) and leaching effects of
NOx (and dissolved organic N) and ortho-P could be observed for at
least another few years in the study, if not longer, highlighting the
importance of long-term monitoring of bioretention soil media perfor-
mance. Typically soil microbes mineralize 1–3% of the N pool back in
the soil each year (Connell et al., 1995). Although microbes also remove
a portion of the N and P pool via microbial immobilization, assimilated
nutrients are re-mineralized back to soil overtime via microbial de-
composition of roots and organic matter, and microbial death and lysis
(Ladd et al., 1981; Turner and Haygarth, 2001). Nitrate leaching has in
fact been observed in several laboratories (Davis et al., 2001, 2006;
Hatt et al., 2007; Blecken et al., 2010) and field studies (Hunt et al.,
2006; Hatt et al., 2009b; Brown et al., 2013) of bioretention systems,
highlighting challenges in dealing with a nutrient that is in a dynamic
state of flux. Similarly, P export has also been observed in field studies
either due to the disturbance of the soils at the initial phase of the study
(Dietz and Clausen, 2005), use of high P-index media (Hunt et al.,
2006), or leaching of the mulch and organic soil in the media (Toronto
and Region Conservation, 2006).

4.4. Removal efficiency predictors and implications for bioretention design

Precipitation depths and peak inflow rates had significant negative
impact on N and P retention by the cells, suggesting that increasing

P. Shrestha et al. Ecological Engineering 112 (2018) 116–131

127



storm sizes and intensities associated with climate change could un-
dermine bioretention functioning. This could be exacerbated by the
phenomenon observed in this research that it was a few larger storm
events, as opposed to those less than 1 inch, that tended to mobilize the
most TSS and TP from the roadway and into the stormwater treatment
system. In a study by Davis et al. (2006), where a series of tests were
performed with different runoff inflow characteristics, a reduction in
treatment efficiency of nutrients was observed when both the rainfall
duration or the flow rate through the bioretention soil was doubled.
Lower rainfall depth and duration also favored effluent peak flow and
volume reduction by bioretention in other studies (Li et al., 2009;
Mangangka, 2013). In fact, Vermont and other Northeastern states are
projected to experience more frequent and intense rainfall events in the
future (Frumhoff et al., 2006; Pealer, 2012). Bioretention design factors
should be ameliorated to accommodate for the increased water quality
volumes anticipated due to climate change. Further, increased rainfall
intensities can increase pollutant mobilization and delivery rates, and
decrease pollutant retention times provided by a system, as result of
increased peak flow rates (Fig. 5). Peak flow rates were significantly
positively correlated to increased peak flow rates, precipitation depth,
ADP, and surprisingly the VH treatment in the study. This can be ex-
plained by the fact that greater diversity may not matter as much as
plant selection and their respective functional traits. For example, Pa-
nicum is known to have deep extensive root systems (McLaughlin et al.,
1999). Plants utilized in the VH treatment have not been a subject of
research, but a one-time measurement of root biomass in the VH versus
VL plots showed greater root density from the VL plots containing the
Panicum. Greater proliferation of root density may have subdued the
peak flow rates in VL plots by slowing infiltration. This suggests that
plant diversity may not matter as much as individual plant functional
traits. Designs features should therefore address the interaction of cli-
mate effects on hydraulic, hydrology and biogeochemical parameters
within bioretention systems.

ADP was not a good predictor for removal efficiencies of most
pollutants, only appearing significantly negative for TP (Table 6). This
could be because the effect of ADP on pollutant build up on the road
surfaces at this site is confounded due to campus management activities
requiring occasional street-sweeping, removing some fraction of dust
and particulates that would otherwise be captured in the influent
during rain events, or that the maximum ADP observed over the course
of this research was only 13 days. Several other studies have showed
little or no correlation of removal efficiency with ADP (max of 15 days)
(Lewis et al., 2008; Winston et al., 2010), or mixed correlation de-
pending on the pollutant type (Mangangka et al., 2015). Greater at-
mospheric buildup and deposition of certain pollutants may occur when
ADP is longer (Kayhanian et al., 2003), but that would also lead to
decreased soil moisture and thus increased soil storage capacity of
runoff, improving pollutant retention (Mangangka et al., 2015) under
certain storm sizes, but treatment may decrease for larger storms once
media reaches saturation. The negative correlation between ADP and
TP removal efficiency observed in our study is opposite to the trend
reported by Mangangka et al. (2015). This reduction could be attrib-
uted to P being primarily present in particulate form (Miguntanna et al.,
2013), and higher particulate loads associated with pollutant build-up
on the surface (Vaze and Chiew, 2002). Though to support their ob-
servation, Mangangka et al. (2015) argue that with longer ADP the
average particulate size is expected to increase, and they become more
easily removable by bioretention system, this was not supported by our
study. On the other hand, the role of soil media control on P removal is
particularly an important one to consider owing to the effectiveness
shown by this study as well (Tables 5 and 6, Fig. 8). Seasonality was a
significantly predictor in the model for all N and P removal efficiency,
where a significant reduction in spring season (May–June) were ob-
served relative to fall (September-early November) for bioretention
performance of those nutrients, despite the largest storm depth of
85.09mm occurring in September. The results can be attributed to

differences in plant growth that is closely tied to seasonality. Percent
cover estimates from Spring to Fall roughly increased from average of
76% to 91% across the cells. Because plants are cut back to only a few
inches off the ground in November, the plants are shorter in spring and
get increasingly taller as the season progresses. Almost all the plants
except the Anemone and Baptisia, reach full maturity only around July.

4.5. Plant assimilation of nutrients

Across all the herbaceous plant species, nutrient composition pat-
terns were similar where N concentrations were much greater in mag-
nitude than P concentrations in both leaves and “all plant parts” ex-
amined, agreeing with other research in the past (Han et al., 2005;
Tanner and Headley, 2011; Winston et al., 2013). Tissue nutrient
concentration ranged from 1.14 to 2.91% dry weight for N, and from
0.22 to 0.39% for P (McJannet et al., 1995) among the species utilized
in the study, indicating that a percent of pollutant removal mechanism
can be contribution from plant uptake of nutrients of dissolved N
(NH4

+, NO3
−) and P pool, which is variable by species (Fig. 9).

However, for accurately estimating the total nutrient amounts removed
by species, bioretention plant nutrient concentration acquisition capa-
city should be paired with aboveground and/or belowground plant
biomass data for the species. Examining concentrations and biomass
together will allow for the estimation of areal uptake of species, which
is a more complete metric of nutrient removal than tissue nutrient
concentrations alone.

We also recorded plant growth, survival and composition changes
within the cells overtime in 2015 and 2016. Our observations will be
useful for informing designers about bioretention plant selection in a
cold climate region. Disappearance of several species was observed
overtime despite plant maintenance through weed removal and careful
attention towards mulching the stocks of the cold sensitive plants (e.g.,
Lobelia and Aquilegia) with thick layer of straw for protection. By 2016,
cardinalis had disappeared from four out of five VH bioretention cells
(and all cells by 2017). Aquilegia and Asclepias were outcompeted in
three of the cells by 2016. It is possible that the aggressive growth of
Anemone in spring (late May to early June), occupying from 20 to 60%
of the coverage among the cells, could have drowned out the later
emerging species like Lobelia and Aquilegia. 2016 was also a remarkably
dry year compared to 2015, so it provided us with the opportunity to
observe and record plant health and survival against the natural mini-
droughts conditions occurring that year. All plants but the Hemerocallis
and Baptisia, appeared to have been affected by the drought. Panicum
height was stunted compared to the year before, while Helenium and
Symphyotrichum contained many dead leaves, but continued growing
new ones following wet conditions, while Aquilegia and Asclepias were
mostly wilted and dead by late August. Overall, Helenium,
Symphyotrichum and Panicum appeared the most robust against the
drought. Cardinalis, Asclepias and Aquilegia appeared to be the least
robust species in general; however, they may be able to survive com-
petition and prolong if spacing between plants are wide enough.

4.6. Informing design through research results

By understanding N and P composition in storm runoff, designers
can optimize critical bioretention design elements required to effec-
tively target the removal of major pollutant constituents, and subse-
quently minimize their transport to waterbodies downstream.

4.6.1. Nitrogen
Given the relatively high organic N proportion of TN (Fig. 3), pro-

motion of aerobic conditions is primarily required in the soil media to
drive mineralization in a two-step process: ammonification, the con-
version of organic N to NH4

+ (ammonium) ion (Wood, 1988;
Gumbricht, 1993), and nitrification, where NH+

4 is oxidized, forming
first nitrites (NO2), which are highly reactive and gets oxidized to NO3

−
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immediately (Okano et al., 2004). NO3
−, a highly mobile anion, is ul-

timately removed via anaerobic denitrification process to achieve
complete N removal from the system (Knowles, 1982; Firestone and
Davidson, 1989; Bollmann and Conrad, 1998). These processes are
microbial-mediated. For N, effective treatment systems must therefore
first rely on physical process of aerobic filtering (Taylor et al., 2005;
Passeport et al., 2009), followed by a continuously saturated anaerobic
zone, with a reliable carbon source as electron donating energy sub-
strates for microbes (Kim et al., 2003). Systems that rely solely on
physical filtration with short detention/retention times may not per-
form adequately for N.

Both lab and field studies have also showed successful N removal in
other cases, by incorporating internal saturated zones (ISZ) in the de-
sign to promote denitrification, which is the major pathway of N re-
moval. Studies involving N have utilized various carbon substrates
ranging from newspaper (Volokita et al., 1996), wheat straw (Soares
and Abeliovich, 1998), sawdust (Robertson and Cherry, 1995), wood-
chips and leaf mulch compost (Blowes et al., 1994) for denitrification
potential. Kim et al. (2003) did a column study utilizing all five organic
substrates in sand and observed 100% removal from newspaper col-
umns, 60% from leaf mulch, and greater than 95% removal from
sawdust, wheat straw and woodchips columns. In another study, Dietz
and Clausen (2006) found that the presence of an ISZ reduced TN
concentrations significantly, but did not affect NOx concentrations, and
significantly exported TP loads. Passeport et al. (2009) found ISZs did
not lower NOx concentrations, but lowered various other N species (TN,
TKN, NH3), and surprisingly TP and ortho-P EMCs and loads as well.

Apart from hydrologic and soil modification to the treatment
system, a pre-treatment could greatly enhance performance.
Observationally, the shallow rock-lined inflow swale in our system is
also appeared to slow runoff flow, and to settle and entrap a portion of
coarse sediments and particulates, offering promise of a pre-treatment
that can increase cell longevity.

4.6.2. Phosphorus
In contrast to N removal from a system, saturation might have un-

wanted effects on P solubility, as P becomes increasingly soluble due to
desorption under extended saturation (Ann et al., 1999; Lintern et al.,
2011; Hurley et al., 2017). This is important to consider in ecosystems
challenged predominantly by P pollution, or both P and N pollution.
Whereas N removal is closely linked to microbial processes, both short
and long-term P removal is heavily relied on soil chemical parameters.
Unlike NOx, phosphates are removed from soil solution through sorp-
tion reactions with metal cations (mainly Al, Fe, Ca) and chemical
precipitation in soils. Thus, design features targeting P retention should
try to optimize those physiochemical soil properties that have the lar-
gest role in P removal (Babatunde et al., 2010). This research evaluated
the use of SorbtiveMedia™, which contains Fe and Al, and found pro-
mising results (Table 5, Figs. 7 & 8). The SorbtiveMedia™ is a fine re-
active media, with a projected service life of 10–30 years when used as
a soil and sand amendment, depending on the site loading character-
istics and amount utilized.1 High Fe and Al content are characteristic of
an effective filter substrate for P removal (Roy, 2016; Wang et al.,
2013). Phosphates bind to organic matter or soil substrates surfaces
containing Fe and Al oxides (present in high amounts in clays and silt)
through ligand exchange reactions, and are taken out of the dissolved
phase (the most bioavailable and transportable) into solid phase (in-
soluble compounds). Phosphates can also form precipitate with dis-
solved metal ions and get filtered out during percolation (Roy, 2016).
However, Fe treatment for P should be considered carefully because of
its sensitivity to redox potential as Fe solubilizes and desorbs P under
reduced conditions. Al treatment may be recommended for im-
mobilizing P under wet conditions as it is not affected by redox

potential changes. Lime materials (CaCO3, Ca(OH)2), may be better
than Al and Fe due to their effectiveness in immobilizing P under
heavily reduced conditions (Ann et al., 1999), although they will re-
lease P under low pH and in acid soils in the presence of carbonates
(Martens and Harriss, 1970; Stumm and Leckie, 1970), high Mg con-
centration (Martens and Harriss, 1970), and organic acids (Inskeep and
Silvertooth, 1988).

As this study indicates that SorbtiveMedia™ as a bioretention soil
amendment is promising, other naturally available sequestering mate-
rials (adsorbents), which accelerate sorption exchange reactions, as
alternatives can also be examined, e.g., red mud, dolomite, limestone,
zeolite, bauxite, calcined waste eggshells, and oyster shells (Drizo et al.,
1999; Köse and Kıvanç, 2011; Vohla et al., 2011; Wang et al., 2013).
Locally produced industrial by-products such as gypsum and drinking
water treatment residuals are also other alternatives (Leader et al.,
2008).

5. Conclusion

Bioretention cells at this site were largely successful at mitigating
volume and peak flow retention, and reducing TSS concentrations,
loads and EMCs. Nutrient loads reduction, however, was more a func-
tion of runoff capture and storage, rather than of actual water quality
improvements, except for the additive treatment cells, which reduced
NOx, TN, ortho-P and TP concentrations, loads and EMCs with variable
significance. Our results indicate that P removal can be greatly en-
hanced by soil media additives (e.g., substrates having higher Fe and Al
metal content). The additive layer of SM applied to two of the eight
bioretention cells studied successfully negated the inputs of N and P
generated by both compost leaching and storm runoff. In non-additive
cells, the transformations of input nutrients, and mineralization of
compost P forms to ortho-P and compost N forms to ammonium/nitrate
and DON could be the major reason for highly variable and poor re-
moval efficiency of the cells. N (and P) removal could be enhanced in
future designs by reducing nutrient content of compost (if it must be
used), or using little to no compost in the soil media, and/or through
deliberate engineering designs to promote microsite conditions of sa-
turation within the soil layers to achieve N transformations via deni-
trification.

Our multiple linear regression results indicated increased storm
sizes and peak flow rates to be the top significant hydrologic predictors
of negative nutrient removal efficiencies (pollutant export) from the
cells. Local climate predictions for New England include increased
rainfall volumes and intensities in the long-term, suggesting that, for
bioretention performances to improve, design initiatives should be
driven by the different local climate challenges including extreme
precipitation events and flood risks, as well as addition to water quality
treatment. Selection of water quality volumes (such as the “WQ vo-
lume” calculation used by the State of Vermont, Connecticut and
Maryland in stormwater permitting) should also be carefully con-
sidered. Both N and P in bioretention systems are dynamic and exhibit
variation in forms over the course of individual storm events, after and
between inter events. Therefore, considering their dynamic speciation,
transport, and fate, bioretention design that relies solely on volume
reduction is not enough to achieve nutrient removal successes.
Promising alternative materials and hydrologic design variables that
enhance N and P capture mechanisms should continue to be explored
and researched. Appropriate plant species, for example ones that reach
maturity faster alongside occupying greater soil coverage and accu-
mulating larger aboveground and belowground biomass, while tolerate
changing environmental conditions should be considered for bioreten-
tion in cold climate regions.

Acknowledgements

This work was supported through a combination of support from1 http://www.imbriumsystems.com/stormwater-treatment-solutions/sorbtive-media.

P. Shrestha et al. Ecological Engineering 112 (2018) 116–131

129

http://www.imbriumsystems.com/stormwater-treatment-solutions/sorbtive-media


University of Vermont’s College of Agriculture and Life Sciences, Lake
Champlain Sea Grant (Award #NA10OAR4170063), and the Lintilhac
Foundation. The authors extend thanks to Joel Tilley for technical
support in the laboratory for water analysis. This work would not have
been possible without the help from undergraduate interns: Anna
Levine, Iliansherry Santiago, Sam Wooster, Lindsay Cotnoir, Danya
AbdelHameid, Jelissa Reynoso, Hannah Klein, Lauren Jenness, Nichole
Montero, Wileyshka M. Rivera, Maxwell Landsman-Gerjoi, Brad
Hansen, and Jacob Woodworth. Additional thank-you is extended to
Alan Howard and Dr. Josef Görres for statistical counseling, Nelish
Pradhan, Gabriela Buccini and Vanesa Perrillo for providing assistance
with R software, and Jason Kokkinos for assistance with field and lab
work. Lastly, we thank Amanda Cording for her time and efforts spend
during construction phase of the bioretention cells.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.ecoleng.2017.12.004.

References

Ann, Y., Reddy, K.R., Delfino, J.J., 1999. Influence of redox potential on phosphorus
solubility in chemically amended wetland organic soils. Ecol. Eng. 14, 169–180.

APHA, AWA, WPCF, 2005. Standard Methods for the Examination of Water and
Wastewater, 21st ed. American Public Health Association, American Water Works
Association, Water Environment Federation, Washington, DC.

Babatunde, A.O., Zhao, Y.Q., Zhao, X.H., 2010. Alum sludge-based constructed wetland
system for enhanced removal of P and OM from wastewater: concept, design and
performance analysis. Bioresour. Technol. 101, 6576–6579.

Balch, G.C., Broadbent, H., Wootton, B.C., S.L. Collins in association with Fleming
College, 2013. Phosphorus Removal Performance of Bioretention Soil Mix Amended
with Imbrium®Systems Sorbtive®Media. Centre for Alternative Wastewater
Treatment.

Belchinskaya, L., Novikova, L., Khokhlov, V., Ly Tkhi, J., 2013. Contribution of ion-ex-
change and non-ion-exchange reactions to sorption of ammonium ions by natural and
activated aluminosilicate sorbent. J. Appl. Chem. 2013.

Birch, G.F., Matthai, C., Fazeli, M.S., 2006. Efficiency of a retention/detention basin to
removecontaminants from urban stormwater. Urban Water J. 3, 69–77.

Blecken, G.-T., Zinger, Y., Deletić, A., Fletcher, T.D., Hedström, A., Viklander, M., 2010.
Laboratory study on stormwater biofiltration: nutrient and sediment removal in cold
temperatures. J. Hydrol. 394, 507–514.

Blowes, D.W., Robertson, W.D., Ptacek, C.J., Merkley, C., 1994. Removal of agricultural
nitrate from tile-drainage effluent water using in-line bioreactors. J. Contam. Hydrol.
15, 207–221.

Bollmann, A., Conrad, R., 1998. Influence of O2 availability on NO and N2O release by
nitrification and denitrification in soils. Glob. Change Biol. 4, 387–396.

Bratieres, K., Fletcher, T.D., Deletic, A., Zinger, Y., 2008. Nutrient and sediment removal
by stormwater biofilters: a large-scale design optimisation study. Water Res. 42,
3930–3940.

Brown, R.A., Birgand, F., Hunt, W.F., 2013. Analysis of consecutive events for nutrient
and sediment treatment in field-monitored bioretention cells. Water Air Soil Pollut.
224, 1581.

Busby, R.R., Torbert, H.A., Gebhart, D.L., 2007. Carbon and nitrogen mineralization of
non-composted and composted municipal solid waste in sandy soils. Soil Biol.
Biochem. 39, 1277–1283.

Clark, S., Pitt, R., 2009. Storm-water filter media pollutant retention under aerobic versus
anaerobic conditions. J. Environ. Eng. 135, 367–371.

Connell, M.J., Raison, R.J., Khanna, P.K., 1995. Nitrogen mineralization in relation to site
history and soil properties for a range of Australian forest soils. Biol. Fertil. Soils 20,
213–220.

Cook, E.A., 2007. Green site design: strategies for storm water management. J. Green
Build. 2, 46–56.

Cording, A., Hurley, S., Whitney, D., 2017. Monitoring methods and designs for evalu-
ating bioretention performance. J. Environ. Manage. 143, 1–10.

County, P.G., 1999. Low-impact Development Design Strategies: An Integrated Design
Approach. Dep. Environ. Resour. Programs Plan. Div., Prince George’s Cty. Md.

Davis, A.P., 2008. Field performance of bioretention: hydrology impacts. J. Hydrol. Eng.
13, 90–95.

Davis, A.P., Shokouhian, M., Sharma, H., Minami, C., 2001. Laboratory study of biological
retention for urban stormwater management. Water Environ. Res. 73, 5–14.

Davis, A.P., Shokouhian, M., Sharma, H., Minami, C., Winogradoff, D., 2003. Water
quality improvement through bioretention Lead, copper, and zinc removal. Water
Environ. Res. 75, 73–82.

Davis, A.P., Shokouhian, M., Sharma, H., Minami, C., 2006. Water quality improvement
through bioretention media: nitrogen and phosphorus removal. Water Environ. Res.
78, 284–293.

Davis, A.P., Hunt, W.F., Traver, R.G., Clar, M., 2009. Bioretention technology: overview
of current practice and future needs. J. Environ. Eng. 135, 109–117.

Davis, A.P., 2007. Field performance of bioretention: water quality. Environ. Eng. Sci. 24,
1048–1064.

Dietz, M.E., Clausen, J.C., 2005. A field evaluation of rain garden flow and pollutant
treatment. Water. Air. Soil Pollut. 167, 123–138.

Dietz, M.E., Clausen, J.C., 2006. Saturation to improve pollutant retention in a rain
garden. Environ. Sci. Technol. 40, 1335–1340.

Djodjic, F., Börling, K., Bergström, L., 2004. Phosphorus leaching in relation to soil type
and soil phosphorus content. J. Environ. Qual. 33, 678–684. http://dx.doi.org/10.
2134/jeq2004.6780.

Drizo, A., Frost, C.A., Grace, J., Smith, K.A., 1999. Physico-chemical screening of phos-
phate-removing substrates for use in constructed wetland systems. Water Res. 33,
3595–3602.

Duncan, H.P., 1999. Cooperative research centre for catchment hydrology. Urban
Stormwater Quality: a Statistical Overview. CRC for Catchment Hydrology, Clayton,
Vic.

Erickson, A.J., Weiss, P.T., Gulliver, J.S., 2013. Impacts and composition of urban
stormwater. Optimizing Stormwater Treatment Practices. Springer, pp. 11–22.

Escudero, A., González-Arias, A., del Hierro, O., Pinto, M., Gartzia-Bengoetxea, N., 2012.
Nitrogen dynamics in soil amended with manures composted in dynamic and static
systems. J. Environ. Manage. 108, 66–72.

Feng, W., Hatt, B.E., McCarthy, D.T., Fletcher, T.D., Deletic, A., 2012. Biofilters for
stormwater harvesting: understanding the treatment performance of key metals that
pose a risk for water use. Environ. Sci. Technol. 46, 5100–5108.

Firestone, M.K., Davidson, E.A., 1989. Microbiological basis of NO and N2O production
and consumption in soil. Exch. Trace Gases Terr. Ecosyst. Atmos. 47, 7–21.

Frumhoff, P.C., McCarthy, J.J., Melillo, J.M., Moser, S.C., Wuebbles, D.J., 2006. Climate
Change in the US Northeast: A Report of the Northeast Climate Impacts Assessment.
Union Concerned Sci, Camb. MA.

Goberna, M., Sánchez, J., Pascual, J.A., García, C., 2006. Surface and subsurface organic
carbon: microbial biomass and activity in a forest soil sequence. Soil Biol. Biochem.
38, 2233–2243.

Guilbert, J., Beckage, B., Winter, J.M., Horton, R.M., Perkins, T., Bomblies, A., 2014.
Impacts of projected climate change over the Lake Champlain Basin in Vermont. J.
Appl. Meteorol. Climatol. 53, 1861–1875.

Gumbricht, T., 1993. Nutrient removal capacity in submersed macrophyte pond systems
in a temperature climate. Ecol. Eng. 2, 49–61.

Han, W., Fang, J., Guo, D., Zhang, Y., 2005. Leaf nitrogen and phosphorus stoichiometry
across 753 terrestrial plant species in China. New Phytol. 168, 377–385.

Harmel, R.D., King, K.W., Slade, R.M., 2003. Automated storm water sampling on small
watersheds. Appl. Eng. Agric. 19, 667–674.

Hatt, B.E., Deletic, A., Fletcher, T.D., 2007. Stormwater reuse: designing biofiltration
systems for reliable treatment. Water Sci. Technol. 55, 201–209.

Hatt, B.E., Fletcher, T.D., Deletic, A., 2009a. Hydrologic and pollutant removal perfor-
mance of stormwater biofiltration systems at the field scale. J. Hydrol. 365, 310–321.

Hatt, B.E., Fletcher, T.D., Deletic, A., 2009b. Hydrologic and pollutant removal perfor-
mance of stormwater biofiltration systems at the field scale. J. Hydrol. 365, 310–321.

Hayhoe, K., Wake, C.P., Huntington, T.G., Luo, L., Schwartz, M.D., Sheffield, J., Wood, E.,
Anderson, B., Bradbury, J., DeGaetano, A., others, 2007. Past and future changes in
climate and hydrological indicators in the US Northeast. Clim. Dyn. 28, 381–407.

Hinman, C., 2012. Low Impact Development: Technical Guidance Manual for Puget
Sound. Puayllop, WA. Retrieved on January 27, 2016, from. http://www.psp.wa.
gov/downloads/LID/20121221_LIDmanual_FINAL_secure.pdf.

Hobbie, S.E., Finlay, J.C., Janke, B.D., Nidzgorski, D.A., Millet, D.B., Baker, L.A., 2017.
Contrasting nitrogen and phosphorus budgets in urban watersheds and implications
for managing urban water pollution. Proc. Natl. Acad. Sci. 114, 4177–4182
201618536.

Hong, E., Seagren, E.A., Davis, A.P., 2006. Sustainable oil and grease removal from
synthetic stormwater runoff using bench-scale bioretention studies. Water Environ.
Res. 78, 141–155.

Hsieh, C., Davis, A.P., 2005. Evaluation and optimization of bioretention media for
treatment of urban storm water runoff. J. Environ. Eng. 131, 1521–1531.

Hunt, W.F., Jarrett, A.R., Smith, J.T., Sharkey, L.J., 2006. Evaluating bioretention hy-
drology and nutrient removal at three field sites in North Carolina. J. Irrig. Drain.
Eng. 132, 600–608.

Hunt, W.F., Smith, J.T., Jadlocki, S.J., Hathaway, J.M., Eubanks, P.R., 2008. Pollutant
removal and peak flow mitigation by a bioretention cell in urban Charlotte, NC. J.
Environ. Eng. 134, 403–408.

Hurley, S.E., Forman, R.T., 2011. Stormwater ponds and biofilters for large urban sites
Modeled arrangements that achieve the phosphorus reduction target for Boston’s
Charles River, USA. Ecol. Eng. 37, 850–863.

Hurley, S., Shrestha, P., Cording, A., 2017. Nutrient leaching from compost: implications
for bioretention and other green stormwater infrastructure. J. Sustain. Water Built.
Environ. 3, 1–8 04017006.

Inskeep, W.P., Silvertooth, J.C., 1988. Inhibition of hydroxyapatite precipitation in the
presence of fulvic, humic, and tannic acids. Soil Sci. Soc. Am. J. 52, 941–946. http://
dx.doi.org/10.2136/sssaj1988.03615995005200040007x.

Köse, T.E., Kıvanç, B., 2011. Adsorption of phosphate from aqueous solutions using cal-
cined waste eggshell. Chem. Eng. J. 178, 34–39.

Kaye, J.P., Groffman, P.M., Grimm, N.B., Baker, L.A., Pouyat, R.V., 2006. A distinct urban
biogeochemistry? Trends Ecol. Evol. 21, 192–199.

Kayhanian, M., Singh, A., Suverkropp, C., Borroum, S., 2003. Impact of annual average
daily traffic on highway runoff pollutant concentrations. J. Environ. Eng. 129,
975–990.

Kim, H., Seagren, E.A., Davis, A.P., 2003. Engineered bioretention for removal of nitrate
from stormwater runoff. Water Environ. Res. 75, 355–367.

Knowles, R., 1982. Denitrification. Microbiol. Rev. 46, 43–70.

P. Shrestha et al. Ecological Engineering 112 (2018) 116–131

130

https://doi.org/10.1016/j.ecoleng.2017.12.004
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0005
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0005
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0010
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0010
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0010
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0015
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0015
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0015
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0020
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0020
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0020
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0020
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0025
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0025
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0025
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0030
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0030
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0035
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0035
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0035
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0040
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0040
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0040
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0045
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0045
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0050
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0050
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0050
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0055
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0055
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0055
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0060
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0060
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0060
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0065
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0065
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0070
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0070
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0070
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0075
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0075
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0080
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0080
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0085
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0085
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0090
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0090
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0095
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0095
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0100
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0100
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0100
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0105
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0105
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0105
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0110
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0110
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0115
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0115
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0120
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0120
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0125
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0125
http://dx.doi.org/10.2134/jeq2004.6780
http://dx.doi.org/10.2134/jeq2004.6780
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0135
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0135
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0135
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0140
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0140
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0140
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0145
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0145
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0150
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0150
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0150
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0155
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0155
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0155
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0160
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0160
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0165
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0165
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0165
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0170
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0170
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0170
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0175
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0175
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0175
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0180
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0180
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0185
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0185
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0190
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0190
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0195
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0195
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0200
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0200
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0205
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0205
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0210
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0210
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0210
http://www.psp.wa.gov/downloads/LID/20121221_LIDmanual_FINAL_secure.pdf
http://www.psp.wa.gov/downloads/LID/20121221_LIDmanual_FINAL_secure.pdf
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0220
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0220
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0220
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0220
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0225
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0225
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0225
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0230
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0230
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0235
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0235
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0235
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0240
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0240
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0240
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0245
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0245
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0245
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0250
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0250
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0250
http://dx.doi.org/10.2136/sssaj1988.03615995005200040007x
http://dx.doi.org/10.2136/sssaj1988.03615995005200040007x
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0260
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0260
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0265
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0265
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0270
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0270
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0270
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0275
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0275
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0280


Low Impact Development (LID) Center, 2007. LID Techniques. Retrieved on January 27,
2016, from. http://lid-stormwater.net/lid_techniques.htm.

Ladd, J.N., Oades, J.M., Amato, M., 1981. Microbial biomass formed from 14C, 15N-
labelled plant material decomposing in soils in the field. Soil Biol. Biochem. 13,
119–126.

Leader, J.W., Dunne, E.J., Reddy, K.R., 2008. Phosphorus sorbing materials: sorption
dynamics and physicochemical characteristics. J. Environ. Qual. 37, 174–181.

Lewis, J.F., Hatt, B.E., Deletic, A., Fletcher, T.D., 2008. The impact of vegetation on the
hydraulic conductivity of stormwater biofiltration systems. In: 11nd International
Conference on Urban Drainage. Edinburgh, Scotland, UK.

Li, L., Davis, A.P., 2014. Urban stormwater runoff nitrogen composition and fate in
bioretention systems. Environ. Sci. Technol. 48, 3403–3410.

Li, Q., Allen, H.L., Wollum, A.G., 2004. Microbial biomass and bacterial functional di-
versity in forest soils: effects of organic matter removal compaction, and vegetation
control. Soil Biol. Biochem. 36, 571–579.

Li, H., Sharkey, L.J., Hunt, W.F., Davis, A.P., 2009. Mitigation of impervious surface
hydrology using bioretention in North Carolina and Maryland. J. Hydrol. Eng. 14,
407–415.

Liao, K.-H., Deng, S., Tan, P.Y., 2017. Blue-green infrastructure: new frontier for sus-
tainable urban stormwater management. In: Tan, P.Y., Jim, C.Y. (Eds.), Greening
Cities, Advances in 21 St Century Human Settlements. Springer, Singapore, pp.
203–226. http://dx.doi.org/10.1007/978-981-10-4113-6_10.

Lintern, A., Daly, E., Duncan, H., Hatt, B.E., Fletcher, T.D., Deletic, A., 2011. Key design
characteristics that influence the performance of stormwater biofilters. In:
Proceedings of the 12th International Conference on Urban Drainage 11–16.

Liu, J., Sample, D.J., Bell, C., Guan, Y., 2014. Review and research needs of bioretention
used for the treatment of urban stormwater. Water 6, 1069–1099.

Lucas, W., Greenway, M., 2007. A comparative study of nutrient retention performance in
vegetated and non-vegetated bioretention mesocosms. NOVATECH 2007.

Mangangka, I.R., Liu, A., Egodawatta, P., Goonetilleke, A., 2015. Performance char-
acterisation of a stormwater treatment bioretention basin. J. Environ. Manage. 150,
173–178.

Mangangka, I.R., 2013. Role of Hydraulic Factors in Constructed Wetland and
Bioretention Basin Treatment Performance. Queensland University of Technology.

Martens, C.S., Harriss, R.C., 1970. Inhibition of apatite precipitation in the marine en-
vironment by magnesium ions. Geochim. Cosmochim. Acta 34, 621–625. http://dx.
doi.org/10.1016/0016-7037(70)90020-7.

McJannet, C.L., Keddy, P.A., Pick, F.R., 1995. Nitrogen and phosphorus tissue con-
centrations in 41 wetland plants: a comparison across habitats and functional groups.
Funct. Ecol. 231–238.

McLaughlin, S., Bouton, J., Bransby, D., Conger, B., Ocumpaugh, W., Parrish, D.,
Taliaferro, C., Vogel, K., Wullschleger, S., 1999. Developing switchgrass as a bioe-
nergy crop. Perspect. New Crops New Uses 282.

Miguntanna, N.P., Liu, A., Egodawatta, P., Goonetilleke, A., 2013. Characterising nu-
trients wash-off for effective urban stormwater treatment design. J. Environ. Manage.
120, 61–67.

Mullane, J.M., Flury, M., Iqbal, H., Freeze, P.M., Hinman, C., Cogger, C.G., Shi, Z., 2015.
Intermittent rainstorms cause pulses of nitrogen, phosphorus, and copper in leachate
from compost in bioretention systems. Sci. Total Environ. 537, 294–303.

National Research Council (NRC), 2008. Urban Stormwater Management in the United
States. Retrieved on Retrieved on January 27, 2016, from. http://www.epa.gov/
npdes/pubs/nrc_stormwaterreport.pdf.

Okano, Y., Hristova, K.R., Leutenegger, C.M., Jackson, L.E., Denison, R.F., Gebreyesus, B.,
Lebauer, D., Scow, K.M., 2004. Application of real-time PCR to study effects of am-
monium on population size of ammonia-oxidizing bacteria in soil. Appl. Environ.
Microbiol. 70, 1008–1016.

Parkin, T.B., 1987. Soil microsites as a source of denitrification variability. Soil Sci. Soc.
Am. J. 51, 1194–1199. http://dx.doi.org/10.2136/sssaj1987.
03615995005100050019x.

Passeport, E., Hunt, W.F., Line, D.E., Smith, R.A., Brown, R.A., 2009. Field study of the
ability of two grassed bioretention cells to reduce storm-water runoff pollution. J.
Irrig. Drain. Eng. 135, 505–510.

Pealer, S., 2012. Lessons from Irene: Building Resiliency as We Rebuild. Clim. Change
Team Vt. Agency Nat. Resour.

Pitt, R., Maestre, A., Morquecho, R., Brown, T., Swann, C., Cappiella, K., Schueler, T.,
2003. Evaluation of NPDES Phase I municipal stormwater monitoring data. National
Conference on Urban Stormwater: Enhancing the Programs at the Local Level. EPA/
625/R-03/003.

Porcella, D.B., Sorensen, D.L., 1980. Characteristics of Nonpoint Source Urban Runoff and
Its Effects on Stream Ecosystems. Corvallis Environmental Research Laboratory,
Office of Research and Development. US Environmental Protection Agency.

Robertson, W.D., Cherry, J.A., 1995. In situ denitrification of septic-system nitrate using
reactive porous media barriers: field trials. Ground Water 33, 99–111.

Robertson, G.P., Tiedje, J.M., 1987. Nitrous oxide sources in aerobic soils: nitrification,
denitrification and other biological processes. Soil Biol. Biochem. 19, 187–193.

Roseen, R., Ballestero, T., Houle, J., Avelleneda, P., Wildey, R., Briggs, J., 2006. Storm
water low-impact development, conventional structural, and manufactured treatment
strategies for parking lot runoff: performance evaluations under varied mass loading
conditions. Transp. Res. Rec. J. Transp. Res. Board 135–147.

Roy, A.H., Wenger, S.J., Fletcher, T.D., Walsh, C.J., Ladson, A.R., Shuster, W.D., Thurston,
H.W., Brown, R.R., 2008. Impediments and solutions to sustainable: watershed-scale
urban stormwater management: lessons from Australia and the United States.
Environ. Manage. 42, 344–359.

Roy, E.D., 2016. Phosphorus recovery and recycling with ecological engineering: a re-
view. Ecol. Eng. 98, 213–227.

Roy-Poirier, A., Champagne, P., Filion, Y., 2010. Review of bioretention system research
and design: past, present, and future. J. Environ. Eng. 136, 878–889.

Institute, S.A.S., 2015. JMP 12.0.0 software. SAS Institute, Inc., Cary, NC.
Soares, M.I.M., Abeliovich, A., 1998. Wheat straw as substrate for water denitrification.

Water Res. 32, 3790–3794.
Stevens, R.J., Laughlin, R.J., Burns, L.C., Arah, J.R.M., Hood, R.C., 1997. Measuring the

contributions of nitrification and denitrification to the flux of nitrous oxide from soil.
Soil Biol. Biochem. 29, 139–151.

Stumm, W., Leckie, J.O., 1970. Phosphate exchange with sediments: its role in the pro-
ductivity of surface water. In: 5th Int. Water Pollution Research Conference.
Pergamon Press, Oxford.

Subramaniam, D.N., Egodawatta, P., Mather, P., Rajapakse, J.P., 2015. Stabilization of
stormwater biofilters: impacts of wetting and drying phases and the addition of or-
ganic matter to filter media. Environ. Manage. 56, 630–642.

Tabatabai, M.A., Dick, W.A., 1979. Distribution and stability of pyrophosphatase in soils.
Soil Biol. Biochem. 11, 655–659.

Tanner, C.C., Headley, T.R., 2011. Components of floating emergent macrophyte treat-
ment wetlands influencing removal of stormwater pollutants. Ecol. Eng. 37, 474–486.

Taylor, G.D., Fletcher, T.D., Wong, T.H., Breen, P.F., Duncan, H.P., 2005. Nitrogen
composition in urban runoff—implications for stormwater management. Water Res.
39, 1982–1989.

Toronto and Region Conservation, 2006. Performance Eval- Uation of Permeable
Pavement and a Bioretention Swale. Toronto and Region Conservation Authority,
Seneca College, King City, Ontario Interim Report #2.

Turner, B.L., Haygarth, P.M., 2001. Biogeochemistry: phosphorus solubilization in re-
wetted soils. Nature 411 258–258.

The Vermont Stormwater Management Manual (VSMM), 2016. Volume 1- Stormwater
Treatment Standards. Vermont Agency of Natural Resources.

Van Seters, T., Smith, D., MacMillan, G., 2006. Performance evaluation of permeable
pavement and a bioretention swale. Proceedings Eighth International Conference on
Concrete Block Paving.

Vaze, J., Chiew, F.H., 2002. Experimental study of pollutant accumulation on an urban
road surface. Urban Water 4, 379–389.

Vitousek, P.M., Matson, P.A., 1988. Nitrogen transformations in a range of tropical forest
soils. Soil Biol. Biochem. 20, 361–367. http://dx.doi.org/10.1016/0038-0717(88)
90017-X.

Vohla, C., Kõiv, M., Bavor, H.J., Chazarenc, F., Mander, Ü., 2011. Filter materials for
phosphorus removal from wastewater in treatment wetlands—a review. Ecol. Eng.
37, 70–89.

Volokita, M., Belkin, S., Abeliovich, A., Soares, M.I.M., 1996. Biological denitrification of
drinking water using newspaper. Water Res. 30, 965–971.

Wang, L., Lyons, J., Kanehi, P., Bannerman, R., Emmons, E., 2000. Watershed
Urbanization and Changes in Fish Communities in Southeastern Wisconsin Streams1.
Wiley Online Library.

Wang, Z., Dong, J., Liu, L., Zhu, G., Liu, C., 2013. Screening of phosphate-removing
substrates for use in constructed wetlands treating swine wastewater. Ecol. Eng. 54,
57–65.

Westerhoff, P., James, J., 2003. Nitrate removal in zero-valent iron packed columns.
Water Res. 37, 1818–1830. http://dx.doi.org/10.1016/S0043-1354(02)00539-0.

Winston, R.J., Hunt III, W.F., Osmond, D.L., Lord, W.G., Woodward, M.D., 2010. Field
evaluation of four level spreader-vegetative filter strips to improve urban storm-water
quality. J. Irrig. Drain. Eng. 137, 170–182.

Winston, R.J., Hunt, W.F., Kennedy, S.G., Merriman, L.S., Chandler, J., Brown, D., 2013.
Evaluation of floating treatment wetlands as retrofits to existing stormwater retention
ponds. Ecol. Eng. 54, 254–265.

Wood, P.M., 1988. Monooxygenase and free radical mechanisms for biological ammonia
oxidation. The Nitrogen and Sulfur Cycles Soc. Gen. Micro. Symp. pp. 65–98.

ZAR, J.H., 1999. Biostatistical Analysis. Upper Saddle River. U.S. Climate Data, N.J.,
Prentice Hall. 2017. Available online: http://www.usclimatedata.com/climate/
burlington/vermont/united-states/usvt0033 (Accessed on 9 June 2017).

P. Shrestha et al. Ecological Engineering 112 (2018) 116–131

131

http://lid-stormwater.net/lid_techniques.htm
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0290
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0290
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0290
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0295
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0295
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0300
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0300
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0300
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0305
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0305
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0310
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0310
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0310
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0315
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0315
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0315
http://dx.doi.org/10.1007/978-981-10-4113-6_10
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0325
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0325
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0325
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0330
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0330
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0335
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0335
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0340
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0340
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0340
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0345
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0345
http://dx.doi.org/10.1016/0016-7037(70)90020-7
http://dx.doi.org/10.1016/0016-7037(70)90020-7
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0355
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0355
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0355
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0360
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0360
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0360
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0365
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0365
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0365
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0370
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0370
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0370
http://www.epa.gov/npdes/pubs/nrc_stormwaterreport.pdf
http://www.epa.gov/npdes/pubs/nrc_stormwaterreport.pdf
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0380
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0380
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0380
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0380
http://dx.doi.org/10.2136/sssaj1987.03615995005100050019x
http://dx.doi.org/10.2136/sssaj1987.03615995005100050019x
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0390
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0390
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0390
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0395
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0395
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0400
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0400
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0400
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0400
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0405
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0405
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0405
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0410
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0410
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0415
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0415
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0420
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0420
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0420
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0420
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0425
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0425
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0425
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0425
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0430
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0430
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0435
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0435
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0440
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0445
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0445
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0450
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0450
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0450
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0455
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0455
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0455
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0460
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0460
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0460
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0465
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0465
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0470
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0470
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0475
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0475
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0475
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0480
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0480
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0480
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0485
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0485
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0490
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0490
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0495
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0495
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0495
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0500
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0500
http://dx.doi.org/10.1016/0038-0717(88)90017-X
http://dx.doi.org/10.1016/0038-0717(88)90017-X
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0510
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0510
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0510
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0515
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0515
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0520
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0520
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0520
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0525
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0525
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0525
http://dx.doi.org/10.1016/S0043-1354(02)00539-0
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0535
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0535
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0535
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0540
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0540
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0540
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0545
http://refhub.elsevier.com/S0925-8574(17)30637-7/sbref0545
http://www.usclimatedata.com/climate/burlington/vermont/united-states/usvt0033
http://www.usclimatedata.com/climate/burlington/vermont/united-states/usvt0033

	Effects of different soil media, vegetation, and hydrologic treatments on nutrient and sediment removal in roadside bioretention systems
	Introduction
	Methods
	Study site description
	Experimental design
	Bioretention maintenance
	Stormwater sampling
	Influent and effluent sampling design
	Water sample collection

	Water quality analysis
	Pollutant loads and mass removal efficiency
	Soil CN content, plant tissue nutrient content, and root biomass
	Statistical analysis

	Results
	Storms sizes and pollutant loadings
	Nitrogen and phosphorus species composition in storm runoff and bioretention effluent
	Volume and pollutant retention capacity of bioretention in various storm sizes
	Hydraulic performance (peak flow and volume) of bioretention cells
	Influent and effluent pollutant concentrations
	Cumulative pollutant mass and EMC removal efficiency from bioretention cells by treatment
	Factors affecting mass removal efficiencies of the different pollutants
	Soil and plant nutrient concentration, root biomass density

	Discussion
	Stormwater N and P composition
	Importance of hydrology on volume and pollution retention capacity of bioretention cells
	Cumulative loads and EMC-based treatment effectiveness
	Removal efficiency predictors and implications for bioretention design
	Plant assimilation of nutrients
	Informing design through research results
	Nitrogen
	Phosphorus


	Conclusion
	Acknowledgements
	Supplementary data
	References




